Service

Rexroth IndraDyn L Synchronous Linear Motors

R911293635 Edition 03

Project Planning Manual

Title	Rexroth IndraDyn L Synchronous Linear Motors
Type of Documentation	Project Planning Manual
Document Typecode	DOK-MOTOR*-MLF******-PR03-EN-P
Internal File Reference	RS-69fcf21a3ccd9e510a6846a000fe2e52-1-en-US-6

Record of Revision

Copyright

Edition	Release Date Notes	
DOK-MOTOR*-MLF******-PR01-EN-P	01/04	First edition
DOK-MOTOR*-MLF******-PR02-EN-P	05/06	Revision / supplement
DOK-MOTOR*-MLF******-PR03-EN-P	05/08	Revision / supplement

© 2008 Bosch Rexroth AG Copying this document, giving it to others and the use or communication of the contents thereof without express authority, are forbidden. Offenders are liable for the payment of damages. All rights are reserved in the event of the grant of a patent or the registration of a utility model or design (DIN 34-1).

Validity The specified data is for product description purposes only and may not be deemed to be guaranteed unless expressly confirmed in the contract. All rights are reserved with respect to the content of this documentation and the availability of the product.

 Published by
 Bosch Rexroth AG

 Bgm.-Dr.-Nebel-Str. 2 ■ 97816 Lohr a. Main, Germany

 Phone +49 (0)93 52 / 40-0 ■ Fax +49 (0)93 52 / 40-48 85

 http://www.boschrexroth.com/

 Dept. BRC/EDM1 (fs)

 Note
 This document has been printed on chlorine-free bleached paper.

		Page
1	Introduction to the Product	1
1.1	Application Range of Linear Direct Drives	1
1.2	About this Documentation	2
1.2.1	Document Structure	2
1.2.2	Additional Documentation	
1.2.3	Additional Components	3
1.2.4	Your Feedback	
1.2.5	Standards	4
2	Important Instructions on Use	5
2.1	Appropriate Use	
2.1.1	Introduction	
2.1.2	Areas of Use and Application	
2.2	Inappropriate Use	
3	Safety Instructions for Electric Drives and Controls	7
3.1	Safety Instructions - General Information	
3.1.1	Using the Safety Instructions and Passing them on to Others	
3.1.2	How to Employ the Safety Instructions	
3.1.3	Explanation of Warning Symbols and Degrees of Hazard Seriousness	
3.1.4	Hazards by Improper Use	
3.2	Instructions with Regard to Specific Dangers	
3.2.1	Protection Against Contact with Electrical Parts and Housings	
3.2.2	Protection Against Electric Shock by Protective Extra-Low Voltage	
3.2.3	Protection Against Dangerous Movements	
3.2.4	Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting	14
3.2.5	Protection Against Contact with Hot Parts	14
3.2.6	Protection During Handling and Mounting	14
3.2.7	Battery Safety	15
3.2.8	Protection Against Pressurized Systems	15
4	Technical Data IndraDyn L	17
4.1	Explanation to Technical Data	
4.1.1	General Information	
4.1.2	Operating Behavior	17
4.1.3	Characteristics	19
4.2	Technical Data - Frame Size MLP040	21
4.3	Technical Data - Frame Size MLP070	
4.3.1	Frame Size MLP070A	24
4.3.2	Frame Size MLP070B	26
4.3.3	Frame Size MLP070C	29
4.4	Technical Data - Frame Size MLP100	31
4.4.1	Frame Size MLP100A	31

		Page
4.4.2	Frame Sizes MLP100B, MLP100C	
4.5	Technical Data - Frame Size MLP140	
4.5.1	Frame Sizes MLP140A, MLP140B	
4.5.2	Frame Size MLP140C	
4.6	Technical Data - Frame Size MLP200	
4.6.1	Frame Sizes MLP200A, MLP200B	
4.6.2	Frame Sizes MLP200C, MLP200D	
4.7	Technical Data - Frame Size MLP300	45
5	Dimensions, Installation Dimensions and -Tolerances	
5.1	Installation Tolerances	
5.2	Dimension Sheets Frame Size 040	
5.2.1	Primary Part MLP040 with Standard Encapsulation	
5.2.2	Primary Part MLP040 with Thermo Encapsulation	
5.2.3	Secondary Part MLS040	
5.3	Dimension Sheets Frame Size 070	
5.3.1	Primary Part MLP070 with Standard Encapsulation	
5.3.2	Primary Part MLP070 with Thermo Encapsulation	
5.3.3	Secondary Part MLS070	
5.4	Dimension Sheets Frame Size 100	
5.4.1	Primary Part MLP100 with Standard Encapsulation	
5.4.2	Primary Part MLP100 with Thermo Encapsulation	
5.4.3	Secondary Part MLS100	
5.5	Dimension Sheets Frame Size 140	
5.5.1	Primary Part MLP140 with Standard Encapsulation	
5.5.2	Primary Part MLP140 with Thermo Encapsulation	
5.5.3	Secondary Part MLS140	
5.6	Dimension Sheets Frame Size 200	
5.6.1	Primary Part MLP200 with Standard Encapsulation	
5.6.2	Primary Part MLP200 with Thermo Encapsulation	
5.6.3	Secondary Part MLS200	
5.7	Dimension Sheets Frame Size 300	
5.7.1	Primary Part MLP300 with Standard Encapsulation	
5.7.2	Primary Part MLP300 with Thermo Encapsulation	
5.7.3	Secondary Part MLS300	68
6	Type Code IndraDyn L	69
6.1	Description	
6.1.1	General Information	
6.1.2	Type Code Primary Part MLP	
	General Information	
	Component MLP	
	Motor frame size	
	Motor Frame Length	
	Winding Code	

		Page
	Cooling	
	Casing	71
	Motor Encoder	71
	Electrical Connection	71
	Other designs	71
6.1.3	Type Code Secondary Part MLS	71
	General Information	71
	Component MLS	71
	Motor frame size	
	Туре	
	Mechanical Design	
	Mechanical protection	
	Segment length	
	Other designs	
6.2	Type Code IndraDyn L Size 040	
6.3	Type Code IndraDyn L Size 070	
6.4	Type Code IndraDyn L Size 100	
6.5	Type Code IndraDyn L Size 140	
6.6	Type Code IndraDyn L Size 200	
6.7	Type Code IndraDyn L Size 300	
7	Accessories and Options	
7.1	Hall Sensor Box	
7.1.1	General Information	
7.1.2	Schematic Assembly	86
8	Electrical Connection	87
8.1	Power Connection	
8.1.1	Power Cable on the Primary Part	
8.1.2	Connection power supply	
	General Information	
	Passing types and cable cross-sections	
8.1.3	Connection Designation on the Rexroth Drive Control Device	
8.2	Connection of Length Measurement System	
9	Application and Construction Instructions	97
9.1	Functional Principle	
9.2	Motor Design	
9.2.1	General Information	
9.2.2	Primary Part Standard Encapsulation	
9.2.3	Primary Part Thermo Encapsulation	
9.2.4	Design Secondary Part	
9.2.5	Frame Sizes	
9.3	Requirements on the Machine Design	
9.3.1	General Information	

		Page
9.3.2	Mass Reduction	102
9.3.3	Mass Rigidity	102
9.3.4	Protection of the Motor Installation Space	103
9.4	Arrangement of Motor Components	104
9.4.1	Single Arrangement	104
9.4.2	Several Motors per Axis	104
	General Information	
	Parallel Arrangement	
	Parallel arrangement: Double Comb Arrangement	
	Parallel arrangement: Arrangement of primary parts in succession	
	Gantry Arrangement	
9.4.3	Vertical Axis	
9.5	Feed and Attractive Forces	
9.5.1	Attractive Forces between Primary and Secondary Part	
9.5.2 9.5.3	Air Gap-related Attractive Forces between Primary and Secondary Part	
9.5.3 9.5.4	Air Gap-related attractive Forces vs. Power Supply	
9.5.4 9.5.5	Air Gap-related Feed Force Reduced overlapping between Primary and Secondary Part	
9.5.5 9.6	Motor Cooling System	
9.6.1	Thermal Behavior of Linear Motors	
9.6.2	Cooling Concept of IndraDyn L Synchronous Linear Motors	
9.6.3	Coolant Medium	
0.0.0	General Information	
	Coolant Additives	
	Coolant Additives	121
	Coolant Temperature	122
	Maximum Pressure	123
9.6.4	Operation of IndraDyn L Synchronous Linear Motors without Liquid Cooling	123
9.6.5	Sizing the Cooling Circuit	124
	General Information	124
	Flow Quantity	125
	Pressure Drop	126
9.6.6	Liquid Cooling System	
	General Information	
	Coolant Duct	
	Further optional components	
0.7	Circuit types	
9.7	Motor Temperature Monitoring	
9.8	Setup Elevation and Ambient Conditions	
9.9 9.10	Protection Class	
9.10 9.11	Compatibility Test Magnetic Fields	
9.11	Vibration and Shock	
9.12	Housing Surface	
9.13	Noise Emission	
9.15	Length Measuring System	
J J		

		Page
9.15.1	General Information	139
9.15.2	Selection Criterias for Length Measuring System	139
	General Information	139
	Frame Sizes	140
	Measuring Principle	140
	Maximum Permitted Velocity and Acceleration	142
	Position Resolution and Position Accuracy	
	Measuring System Cables	143
	Recommended linear scales for linear motors	143
9.15.3	Mounting the Length Measuring Systems	
9.16	Linear Guides	
9.17	Braking Systems and Holding Devices	145
9.18	End Position Shock Absorber	
9.19	Axis Cover Systems	
9.20	Wipers	
9.21	Drive and Control of IndraDyn L motors	
9.21.1	General Information	
9.21.2	Drive Controller and Power Supply Modules	
9.21.3	Control Systems	
9.22	Deactivation upon EMERGENCY STOPand in the Event of a Malfunction	
9.22.1	General Information	149
9.22.2	Deactivation by the Drive	149
9.22.3	Deactivation by a Master Control	
	Deactivation by control functions	
	Drive initiated by the control shutdown	
9.22.4	Deactivation via Mechanical Braking Device	
9.22.5	Response to a Mains Failure	
9.22.6	Short-Circuit of DC Bus	
9.23	Maximum Acceleration Changes (Jerk Limitation)	
9.24	Position and Velocity Resolution	
9.24.1	Drive Internal Position Resolution and Position Accuracy	
9.24.2	Velocity Resolution	
9.25	Load Rigidity	
9.25.1	General Information	
9.25.2	Static Load Rigidity	
9.25.3	Dynamic Load Rigidity	156
10	Motor-Controller-Combinations	159
10.1	General Explanation	159
10.1.1	General Information	159
10.1.2	Explanation of the Stated Sizes	159
10.2	Motor-Control-Combination; Separate Arrangement of the Primary Part	160
10.2.1	Controlled Constant DC Link, Rated Connecting Voltage 3 x AV 400 V	160
10.3	Motor-control-combination; parallel arrangement of the primary part	168
10.3.1	Controlled constant DC link, rated connecting voltage 3 x AV 400 V	168

		Page
11	Motor Dimensioning	179
11.1	General Procedure	
11.2	Basic Formulae	181
11.2.1	General Movement Equations	181
11.2.2	Feed Forces	182
11.2.3	Average Velocity	184
11.2.4	Trapezoidal Velocity	185
	General Information	185
	Acceleration, initial velocity = 0	
	Acceleration, initial velocity ≠ 0	186
	Constant velocity	
	Brakes, Final Velocity = 0	
	Brakes, Final Velocity ≠ 0	
11.2.5	Triangular Velocity	
11.2.6	Sinusoidal Velocity	
11.3	Duty Cycle and Feed Force	
11.3.1	General Information	
11.3.2	Determining the Duty Cycle	
11.4	Determining the Drive Power	
11.4.1	General Information	
11.4.2	Rated Output	
11.4.3	Maximum Output	
11.4.4	Cooling Capacity	
11.4.5	Energy Regeneration	
11.5		
11.6 11.6.1	Sizing Examples	
11.0.1	Handling axis General Information	
	Specifications	
	Calculation	
	Selection of motor – controller combination	
	Selection of motor – controller combination.	
	Power Calculation	
	Selection of linear scale	
	Motor efficiency	
	Final overtemperature of the motor	
11.6.2	Machine Tool Feed Axis; Dimensioning via Duty Cycle	
11.0.2	General Information	
	Specifications	
	Calculation	
	Drive selection	
	Determining the cooling capacity	
12	Handling, Transport and Storage	211
12.1	Identification of the Motor Components	
12.1.1	Primary Part	

		Page
12.1.2	Secondary Part	
12.2	Delivery Status and Packaging	
12.2.1	Primary Parts	
12.2.2	Secondary Parts	
12.3	Transport and Storage	
12.3.1	Transport	
12.3.2	Bearing	
12.4	Checking the Motor Components	215
12.4.1	Factory Checks of the Motor Components	
12.4.2	Incoming Inspection by the Customer	216
13	Assembly	217
13.1	Basic Precondition	
13.2	General Procedure at Mounting of the Motor Components	
13.2.1	General Information	
13.2.2	Installation at Spanned Secondary Parts over the entire Traverse Path	217
13.2.3	Installation at Whole Secondary Part over the Entire Traverse Path	218
13.3	Installation of Secondary Part Segments	220
13.4	Installation of the Primary Part	223
13.5	Air-gap, Parallelism and Symmetry among the Motor Components	224
13.6	Connection Liquid Cooling	225
13.7	Screw Locking	226
13.7.1	General Information	226
13.7.2	Securing Screwed Connections using LOCTITE in Tapped Blind Holes	226
14	Commissioning, Operation and Maintenance	227
14.1	General Information for Startup of IndraDyn L Motors	
14.2	General Precondition	227
14.2.1	General Information	227
14.2.2	Adherence of all Electrically and Mechanically Components	228
14.2.3	Implements	228
14.3	General Start-Up Procedure	228
14.4	Parameterization	229
14.4.1	General Information	229
14.4.2	Entering Motor Parameters	
14.4.3	Motor Parameter at Parallel Arrangement	
14.4.4	Operation of IndraDyn L Synchronous Linear Motors without Liquid Cooling	
14.4.5	Input of Linear Scale Parameters	
14.4.6	Input of Drive Limitations and Application-Related Parameters	
14.5	Determining the Polarity of the Linear Scale	
14.6	Commutation Adjustment	
14.6.1	General Information	
14.6.2	Method 1: Measuring the Reference between Primary and Secondary Part	
14.6.3	Method 2: Current Flow Method Manually Activated	
14.6.4	Method 3: Current Flow Method Automatically Activated	

		Page
14.7	Setting and Optimizing the Control Loop	
14.7.1	General Sequence	
14.7.2	Parameter Value Assignments and Optimization of Gantry Axes	
	General Information.	
	Parameter settings	
14.7.3	Estimating the Moved Mass Using a Velocity Ramp	
14.8	Maintenance and Check of Motor Components	
14.8.1	General Information	
14.8.2	Check of Motor and Auxiliary Components	
14.8.3	Electrical Check of Motor Components	
15	Appendix	247
15.1	Recommended Suppliers of Additional Components	
15.1.1	Length Measuring System	
15.1.2	Linear Scales	
15.1.3	Energy Chains	
15.1.4	Cooling Aggregate	
15.1.5	Coolant Additives	
15.1.6	Coolant Hose	
15.1.7	Axis Cover Systems	
15.1.8	End Position Cushioning	
15.1.9	Clamping Elemens for Linear Scales	
15.1.10	External Mechanical Brakes	
15.1.11	Weight Compensation Systems	250
15.1.12	2 Wiper	
15.2	Enquiry Form for Linear Drives	
16	Service and Support	
16.1	Helpdesk	
16.2	Service Hotline	
16.3	Addresses	
16.4	Helpful Information	
	- F	
	Index	

1 Introduction to the Product

1.1 Application Range of Linear Direct Drives

New technologies with a high economic use, demand more and more numeric driven movements with partly extreme standards on acceleration, speed and exactness.

Conventional NC-drives, consisting of a rotating electrical motor and mechanical transmission elements like gearboxes, belt transmissions or gear rack pinions, cannot fulfill these demands or, if only with high effort.

In many cases, the linear direct drive technology is an optimal alternative providing significant benefits:

- High velocity and acceleration
- Excellent control quality and positioning behavior
- Direct power transfer no mechanical transmission elements like ball srew, toothed belt, gear rack, etc.
- Maintenance-free drive (no wearing parts at the motor)
- Simplified machine structure
- High static and dynamic load rigidity

Fig.1-1: Illustration example IndraDyn L

Due to the direct installation in to the machine, there are no wearing mechanical components, making a power train with no backlash or minimized backlash available. This permits very high control qualities with a gain in the position control loop (Kv factor) of more than 20 m/min/mm to be reached.

In conventional electromagnetic systems, positioning tasks with high feed rates or highly accelerated short-stroke movements in quick succession lead to a premature deterioration of mechanical parts and thus to loss and significant costs. In these applications linear direct drives offer decisive advantages.

Starting from the above-mentioned benefits, there are the following application ranges for linear synchronous direct drives:

- High-speed cutting in transfer lines and machining centers
- Grinding, in particular camshaft and crankshaft machining

- Laser machining
- Precision and ultra-precision machining,
- Sheet-metal working,
- Handling, textile and packaging machines
- Free form surface machining
- Wood machining,
- Printed circuit board machining,
-

Due to a practice-oriented combination of motor technology with intelligent digital drive controllers the linear direct drive technique offers new solutions with significantly improved performance.

The development status of the synchronous linear technique of Bosch Rexroth permits a very high force density.

The spectrum of Bosch Rexroth synchronous linear drive technology, which is described below, permits feed drive systems of 250 N up to 21.000 N per motor and speed over 600 m/min.

The following diagram gives an overview of the performance spectrum of the Bosch Rexroth motors type IndraDyn L.

Performance List

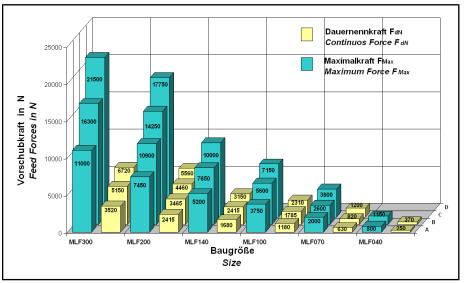


Fig.1-2: Performance spectrum IndraDyn L motors

1.2 About this Documentation

1.2.1 Document Structure

This documentation includes safety regulations, technical data and operating instructions. The following table provides an overview of the contents of this documentation.

Chapter	Title	Contents	
1	Introduction	Product presentaion / Notes re- garding reading	
2	Important Instructions on Use	Important Cafab / Natao	
3	Safety	Important Safety Notes	

Chapter	Title	Contents	5		
4	Technical Data				
5	Specifications				
6	Type Codes		De- and prip-		
7	Accessories	Product De- scrip- tion		Prac- tice	for op- erating and main-
8	Connection Technique				
9	Operating Condition and Application Instructions				
10	Motor-Control-Combination				
11	Motor dimensioning				te-
12	Handling, Transport and Storage				nance per-
13	Installation				sonnel
14	Startup, Operation and Maintenance				
15	Service & Support			1	
16	Appendix	Additional information			
17	Index			ות	

Fig. 1-3: Chapter structure

1.2.2 Additional Documentation

For project planning your drive systems with motors of the IndraDyn A series you will possible need additional documentation, according to the devices used. Rexroth provides the entire product documentation in the Bosch Rexroth media directory (in PDF format) under http://www.boschrexroth.com/various/utilities/ mediadirectory/index.jsp.

1.2.3 Additional Components

Documentation for external systems which are connected to Bosch Rexroth components are not included in the scope of delivery and must be ordered directly from the corresponding manufacturers.

For information about the manufacturers see chapter 16 "Appendix"

1.2.4 Your Feedback

Your experiences are an essential part of the process of improving both the product and the documentation.

Please do not hesitate to inform us of any mistakes you detect in this documentation or of any modifications you might desire. We would appreciate your feedback.

Please send your remarks to:

Bosch Rexroth Electric Drives and Controls GmbH

Dep. BRC/EDM1

Buergermeister-Dr.-Nebel-Strasse 2

97816 Lohr, Germany

Fax +49 (0) 93 52 / 40-43 80

1.2.5 Standards

This documentation refers to German, European and international technical standards. Documents and sheets on standards are subject to copyright protection and may not be passed on to third parties by Rexroth. If need be, please contact the authorized sales outlets or, in Germany, directly:

BEUTH Verlag GmbH

Burggrafenstraße 6 10787 Berlin, Germany Tel. +49-(0)30-26 01-22 60 Fax +49-(0)30-26 01-12 60 Internet: http://www.din.de/beuth Email: postmaster@beuth.de

Important Instructions on Use

2 Important Instructions on Use

2.1 Appropriate Use

2.1.1 Introduction

Bosch Rexroth products are designed and manufactured using the latest stateof-the-art-technology. Before they are delivered, they are inspected to ensure that they operate safely.

The products must only be used as intended. If they are not used as intended, situations may arise that result in personal injuries or damage to property.

For damage caused by products not being used as intended, Bosch Rexroth gives no warranty, assumes no liability, and will not pay for any damages. Any risks resulting from the products not being used as intended are the sole responsibility of the user.

Before using the Bosch Rexroth products, the following condition precedent must be fulfilled so as to ensure that they are used as intended:

- Everyone who in any way whatsoever handles one of our products must read and understand the corresponding notes regarding safety and regarding the intended use.
- If the products are hardware, they must be kept in their original state, i.e. no constructional modifications must be made. Software products must not be decompiled; their source codes must not be modified.
- Damaged or improperly working products must not be installed or put into operation.
- It must be ensured that the products are installed according to the regulations specified in the documentation.

2.1.2 Areas of Use and Application

Synchronous linear motors of the IndraDyn L series of Bosch Rexroth are determined to be used as linear servo drive motors.

Drive device types with different driving powers and different interfaces are available for an application-specific use of the motors.

It is necessary to control and monitor the motors to connect additional sensors, e.g. length measuring systems.

R B	•	The motors must only be used with the accessories specified in this documentation. Components that are not explicitly men- tioned must neither be attached nor connected. The same is true for cables and lines.
	•	The operation must only be carried out in the explicitly men- tioned configurations and combinations of the component and with the software and firmware specified in the corresponding functional description.

Any connected drive control device must be programmed before startup in order to ensure that the motor executes the functions specifically to the particular application.

The motors may only be operated under the assembly, mounting and installation conditions, in the normal position, and under the environmental conditions Important Instructions on Use

(temperature, degree of protection, humidity, EMC etc.) specified in this documentation.

2.2 Inappropriate Use

Any use of the motors outside of the fields of application mentioned above or under operating conditions and technical data other than those specified in this documentation is considered to be "inappropriate use".

IndraDyn L motors must not be used if:

- They are subject to operating conditions which do not comply with the ambient conditions described above. E.g. operation under water, under extreme variations in temperature or extreme maximum temperatures is not permitted.
- The intended fields of application have not been expressly released for the motors by Bosch Rexroth. Please make absolutely sure that the instructions given in the general safety notes are also complied with!

```
IndraDyn L motors are not suited to be operated directly on the power supply.
```

3 Safety Instructions for Electric Drives and Controls

3.1 Safety Instructions - General Information

3.1.1 Using the Safety Instructions and Passing them on to Others

Do not attempt to install or commission this device without first reading all documentation provided with the product. Read and understand these safety instructions and all user documentation prior to working with the device. If you do not have the user documentation for the device, contact your responsible Bosch Rexroth sales representative. Ask for these documents to be sent immediately to the person or persons responsible for the safe operation of the device.

If the device is resold, rented and/or passed on to others in any other form, these safety instructions must be delivered with the device in the official language of the user's country.

Improper use of these devices, failure to follow the safety instructions in this document or tampering with the product, including disabling of safety devices, may result in material damage, bodily harm, electric shock or even death!

Observe the safety instructions!

3.1.2 How to Employ the Safety Instructions

Read these instructions before initial commissioning of the equipment in order to eliminate the risk of bodily harm and/or material damage. Follow these safety instructions at all times.

- Bosch Rexroth AG is not liable for damages resulting from failure to observe the warnings provided in this documentation.
- Read the operating, maintenance and safety instructions in your language before commissioning the machine. If you find that you cannot completely understand the documentation for your product, please ask your supplier to clarify.
- Proper and correct transport, storage, assembly and installation, as well as care in operation and maintenance, are prerequisites for optimal and safe operation of this device.
- Only assign trained and qualified persons to work with electrical installations:
 - Only persons who are trained and qualified for the use and operation of the device may work on this device or within its proximity. The persons are qualified if they have sufficient knowledge of the assembly, installation and operation of the product, as well as an understanding of all warnings and precautionary measures noted in these instructions.
 - Furthermore, they must be trained, instructed and qualified to switch electrical circuits and devices on and off in accordance with technical safety regulations, to ground them and to mark them according to the requirements of safe work practices. They must have adequate safety equipment and be trained in first aid.
- Only use spare parts and accessories approved by the manufacturer.

- Follow all safety regulations and requirements for the specific application as practiced in the country of use.
- The devices have been designed for installation in industrial machinery.
- The ambient conditions given in the product documentation must be observed.
- Only use safety-relevant applications that are clearly and explicitly approved in the Project Planning Manual. If this is not the case, they are excluded. Safety-relevant are all such applications which can cause danger to persons and material damage.
- The information given in the documentation of the product with regard to the use of the delivered components contains only examples of applications and suggestions.

The machine and installation manufacturer must

- make sure that the delivered components are suited for his individual application and check the information given in this documentation with regard to the use of the components,
- make sure that his application complies with the applicable safety regulations and standards and carry out the required measures, modifications and complements.
- Commissioning of the delivered components is only permitted once it is sure that the machine or installation in which they are installed complies with the national regulations, safety specifications and standards of the application.
- Operation is only permitted if the national EMC regulations for the application are met.
- The instructions for installation in accordance with EMC requirements can be found in the section on EMC in the respective documentation (Project Planning Manuals of components and system).

The machine or installation manufacturer is responsible for compliance with the limiting values as prescribed in the national regulations.

 Technical data, connection and installation conditions are specified in the product documentation and must be followed at all times.

National regulations which the user must take into account

- European countries: according to European EN standards
- United States of America (USA):
 - National Electrical Code (NEC)
 - National Electrical Manufacturers Association (NEMA), as well as local engineering regulations
 - regulations of the National Fire Protection Association (NFPA)
- Canada: Canadian Standards Association (CSA)
- Other countries:
 - International Organization for Standardization (ISO)
 - International Electrotechnical Commission (IEC)

3.1.3 Explanation of Warning Symbols and Degrees of Hazard Seriousness

The safety instructions describe the following degrees of hazard seriousness. The degree of hazard seriousness informs about the consequences resulting from non-compliance with the safety instructions:

Warning symbol	Signal word	Degree of hazard serious- ness acc. to ANSI Z 535.4-2002
	Danger	Death or severe bodily harm will occur.
	Warning	Death or severe bodily harm may occur.
	Caution	Minor or moderate bodily harm or material damage may occur.

Fig.3-1: Hazard classification (according to ANSI Z 535)

3.1.4 Hazards by Improper Use

DANGER	High electric voltage and high working current! Risk of death or severe bodily injury by electric shock! Observe the safety instructions!
DANGER	Dangerous movements! Danger to life, severe bodily harm or material damage by unintentional motor movements! Observe the safety instructions!
WARNING	High electric voltage because of incorrect connection! Risk of death or bodily injury by electric shock! Observe the safety instructions!
WARNING	Health hazard for persons with heart pacemakers, metal implants and hearing aids in proximity to electrical equipment! Observe the safety instructions!
CAUTION	Hot surfaces on device housing! Danger of injury! Danger of burns! Observe the safety instructions!
CAUTION	Risk of injury by improper handling! Risk of bodily injury by bruising, shearing, cutting, hitting or improper handling of pressurized lines! Observe the safety instructions!

Risk of injury by improper handling of batteries!

Observe the safety instructions!

3.2 Instructions with Regard to Specific Dangers

3.2.1 Protection Against Contact with Electrical Parts and Housings

This section concerns devices and drive components with voltages of **more than 50 Volt**.

Contact with parts conducting voltages above 50 Volts can cause personal danger and electric shock. When operating electrical equipment, it is unavoidable that some parts of the devices conduct dangerous voltage.

High electrical voltage! Danger to life, electric shock and severe bodily injury!

- Only those trained and qualified to work with or on electrical equipment are permitted to operate, maintain and repair this equipment.
- Follow general construction and safety regulations when working on power installations.
- Before switching on the device, the equipment grounding conductor must have been non-detachably connected to all electrical equipment in accordance with the connection diagram.
- Do not operate electrical equipment at any time, even for brief measurements or tests, if the equipment grounding conductor is not permanently connected to the mounting points of the components provided for this purpose.
- Before working with electrical parts with voltage potentials higher than 50 V, the device must be disconnected from the mains voltage or power supply unit. Provide a safeguard to prevent reconnection.
- With electrical drive and filter components, observe the following:

Wait **30 minutes** after switching off power to allow capacitors to discharge before beginning to work. Measure the electric voltage on the capacitors before beginning to work to make sure that the equipment is safe to touch.

- Never touch the electrical connection points of a component while power is turned on. Do not remove or plug in connectors when the component has been powered.
- Install the covers and guards provided with the equipment properly before switching the device on. Before switching the equipment on, cover and safeguard live parts safely to prevent contact with those parts.
- A residual-current-operated circuit-breaker or r.c.d. cannot be used for electric drives! Indirect contact must be prevented by other means, for example, by an overcurrent protective device according to the relevant standards.
- Secure built-in devices from direct touching of electrical parts by providing an external housing, for example a control cabinet.

	For electrical drive and filter components with voltages of more than 50 volts , observe the following additional safety instructions.
	High housing voltage and high leakage current! Risk of death or bodily injury by electric shock!
DANGER	 Before switching on, the housings of all electrical equipment and motors must be connected or grounded with the equipment grounding conductor to the grounding points. This is also applicable before short tests.
	• The equipment grounding conductor of the electrical equipment and the devices must be non-detachably and permanently connected to the power supply unit at all times. The leakage current is greater than 3.5 mA.
	 Over the total length, use copper wire of a cross section of a minimum of 10 mm² for this equipment grounding connection!
	 Before commissioning, also in trial runs, always attach the equipment grounding conductor or connect to the ground wire. Otherwise, high vol- tages may occur at the housing causing electric shock.

3.2.2 Protection Against Electric Shock by Protective Extra-Low Voltage

Protective extra-low voltage is used to allow connecting devices with basic insulation to extra-low voltage circuits.

All connections and terminals with voltages between 5 and 50 volts at Rexroth

products are PELV systems. ¹⁾ It is therefore allowed to connect devices equipped with basic insulation (such as programming devices, PCs, notebooks, display units) to these connections and terminals.

High electric voltage by incorrect connection! Risk of death or bodily injury by electric shock!

If extra-low voltage circuits of devices containing voltages and circuits of more than 50 volts (e.g. the mains connection) are connected to Rexroth products, the connected extra-low voltage circuits must comply with the requirements for PELV. ²)

3.2.3 Protection Against Dangerous Movements

Dangerous movements can be caused by faulty control of connected motors. Some common examples are:

- improper or wrong wiring of cable connections
- incorrect operation of the equipment components
- wrong input of parameters before operation
- malfunction of sensors, encoders and monitoring devices
- defective components
- software or firmware errors

Dangerous movements can occur immediately after equipment is switched on or even after an unspecified time of trouble-free operation.

- 1) "Protective Extra-Low Voltage"
- 2) "Protective Extra-Low Voltage"

The monitoring in the drive components will normally be sufficient to avoid faulty operation in the connected drives. Regarding personal safety, especially the danger of bodily harm and material damage, this alone cannot be relied upon to ensure complete safety. Until the integrated monitoring functions become effective, it must be assumed in any case that faulty drive movements will occur. The extent of faulty drive movements depends upon the type of control and the state of operation.

Dangerous movements! Danger to life, risk of injury, severe bodily harm or material damage!

• Ensure personal safety by means of qualified and tested higher-level monitoring devices or measures integrated in the installation.

These measures have to be provided for by the user according to the specific conditions within the installation and a hazard and fault analysis. The safety regulations applicable for the installation have to be taken into consideration. Unintended machine motion or other malfunction is possible if safety devices are disabled, bypassed or not activated.

To avoid accidents, bodily harm and/or material damage:

- Keep free and clear of the machine's range of motion and moving parts. Possible measures to prevent people from accidentally entering the machine's range of motion:
 - use safety fences
 - use safety guards
 - use protective coverings
 - install light curtains or light barriers
- Fences and coverings must be strong enough to resist maximum possible momentum.
- Mount the emergency stop switch in the immediate reach of the operator. Verify that the emergency stop works before startup. Don't operate the device if the emergency stop is not working.
- Isolate the drive power connection by means of an emergency stop circuit or use a safety related starting lockout to prevent unintentional start.
- Make sure that the drives are brought to a safe standstill before accessing or entering the danger zone.
- Additionally secure vertical axes against falling or dropping after switching off the motor power by, for example:
 - mechanically securing the vertical axes,
 - adding an external braking/ arrester/ clamping mechanism or
 - ensuring sufficient equilibration of the vertical axes.
- The standard equipment motor brake or an external brake controlled directly by the drive controller are **not sufficient to guarantee personal safety**!
- Disconnect electrical power to the equipment using a master switch and secure the switch against reconnection for:
 - maintenance and repair work
 - cleaning of equipment
 - long periods of discontinued equipment use
- Prevent the operation of high-frequency, remote control and radio equipment near electronics circuits and supply leads. If the use of such devices cannot be avoided, verify the system and the installation for possible malfunctions in all possible positions of normal use before initial startup. If necessary, perform a special electromagnetic compatibility (EMC) test on the installation.

3.2.4 Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting

Magnetic and electromagnetic fields generated by current-carrying conductors and permanent magnets in motors represent a serious personal danger to those with heart pacemakers, metal implants and hearing aids.

Health hazard for persons with heart pacemakers, metal implants and hearing aids in proximity to electrical equipment!

- Persons with heart pacemakers and metal implants are not permitted to enter following areas:
 - Areas in which electrical equipment and parts are mounted, being operated or commissioned.
 - Areas in which parts of motors with permanent magnets are being stored, repaired or mounted.
- If it is necessary for somebody with a pacemaker to enter such an area, a doctor must be consulted prior to doing so. The noise immunity of present or future implanted heart pacemakers differs greatly so that no general rules can be given.
- Those with metal implants or metal pieces, as well as with hearing aids, must consult a doctor before they enter the areas described above. Otherwise health hazards may occur.

3.2.5 Protection Against Contact with Hot Parts

Hot surfaces at motor housings, on drive controllers or chokes! Danger of injury! Danger of burns!

- Do not touch surfaces of device housings and chokes in the proximity of heat sources! Danger of burns!
- Do not touch housing surfaces of motors! Danger of burns!
- According to the operating conditions, temperatures can be higher than 60 °C, 140°F during or after operation.
- Before accessing motors after having switched them off, let them cool down for a sufficiently long time. Cooling down can require up to 140 minutes! Roughly estimated, the time required for cooling down is five times the thermal time constant specified in the Technical Data.
- After switching drive controllers or chokes off, wait 15 minutes to allow them to cool down before touching them.
- Wear safety gloves or do not work at hot surfaces.
- For certain applications, the manufacturer of the end product, machine or installation, according to the respective safety regulations, has to take measures to avoid injuries caused by burns in the end application. These measures can be, for example: warnings, guards (shielding or barrier), technical documentation.

3.2.6 Protection During Handling and Mounting

•

In unfavorable conditions, handling and mounting certain parts and components in an improper way can cause injuries.

$\mathbf{\Lambda}$	Risk of injury by improper handling! Bodily injury by bruising, shearing cutting, hitting!
CAUTION	 Observe the general construction and safety regulations on handling an mounting.
	Use suitable devices for mounting and transport.
	 Avoid jamming and bruising by appropriate measures.
	 Always use suitable tools. Use special tools if specified.
	• Use lifting equipment and tools in the correct manner.
	 If necessary, use suitable protective equipment (for example safety go gles, safety shoes, safety gloves).
	• Do not stand under hanging loads.
	Immediately clean up any spilled liquids because of the danger of skiddir

3.2.7 Battery Safety

Batteries consist of active chemicals enclosed in a solid housing. Therefore, improper handling can cause injury or material damage.

	Risk of injury by improper handling!
	 Do not attempt to reactivate low batteries by heating or other methods (risk of explosion and cauterization).
CAUTION	 Do not recharge the batteries as this may cause leakage or explosion.
	 Do not throw batteries into open flames.
	Do not dismantle batteries.
	 When replacing the battery/batteries do not damage electrical parts in- stalled in the devices.
	Only use the battery types specified by the manufacturer.
	Environmental protection and disposal! The batteries contained in the product are considered dangerous goods during land, air, and sea transport (risk of explosion) in the sense of the legal regulations. Dispose of used batteries separate from other waste. Observe the local regulations in the country of assembly.

3.2.8 Protection Against Pressurized Systems

According to the information given in the Project Planning Manuals, motors cooled with liquid and compressed air, as well as drive controllers, can be partially supplied with externally fed, pressurized media, such as compressed air, hydraulics oil, cooling liquids and cooling lubricating agents. Improper handling of the connected supply systems, supply lines or connections can cause injuries or material damage.

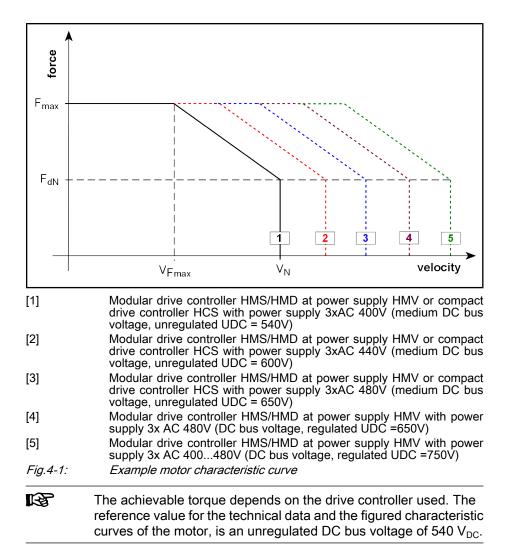
A	Risk of injury by improper handling of pressurized lines!					
	 Do not attempt to disconnect, open or cut pressurized lines (risk of explosion). 					
CAUTION	 Observe the respective manufacturer's operating instructions. 					
	 Before dismounting lines, relieve pressure and empty medium. 					
	 Use suitable protective equipment (for example safety goggles, safety shoes, safety gloves). 					
	Immediately clean up any spilled liquids from the floor.					
	Environmental protection and disposal! The agents used to operate the product might not be economically friendly. Dispose of ecolog- ically harmful agents separately from other waste. Observe the local regulations in the country of assembly.					

4 Technical Data IndraDyn L

4.1 Explanation to Technical Data

4.1.1 General Information

All relevant technical motor data as well as the functional principle of this motors are given on the following pages in terms of tables and characteristic curves. The following interdependence was noticed:


- Size and length of the primary part
- Winding mode primary part
- Available power supply or DC bus voltage

1 27	All given data and characteristic curves relate on the following con- ditions – unless otherwise noted:

- Motor-winding temperature 135 °C.
- Nominal air gap
- Cooling method water, supply temperature 30 °C
- Resulting data from certain motor-controller combinations can differ from the given data. See chapter 10 Motor-controller combinations.

4.1.2 Operating Behavior

The characteristic force over speed is given as a limiting curve. The path and the basic data of this characteristic curves are defined by the level of the DC bus voltage and the appropriate motor-specific data as inductivity, resistor and the motor constant. By varying the DC bus voltage (different control devices, supply modules and connected loads) and different motor windings result in different characteristic curves.

The maximum force F_{MAX} is available up to a speed v_{FMAX} . When the velocity rises, the available DC bus voltage is reduced by the velocity-dependent back electromotive force of the motor. This leads to a reduction of the maximum feed force at rising velocity. The characteristic curves are specified up to the continuous nominal force. The velocity that belongs to the continuous nominal force is known as nominal velocity v_N .

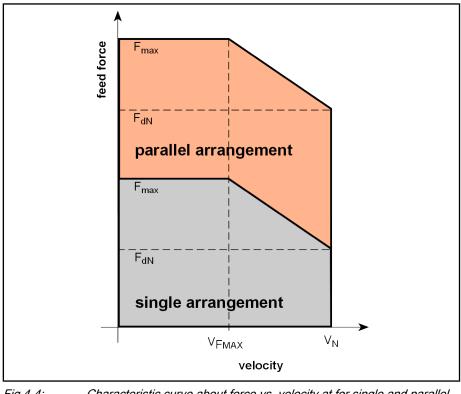
The specified characteristic curves can linearly be converted according to the existing voltages if the connection voltages or DC bus voltages are different.

Where power supply modules with unregulated DC bus voltage are concerned, possible voltage drops must be taken into account that can be caused by simultaneous acceleration of several axes.

Example:

Fig.4-2:

Formula for conversion


Conversion to DC bus voltage 750VDC

$$\begin{split} \mathsf{M}_{\text{max750V}} &= \mathsf{M}_{\text{max}} = \text{constant} & \mathsf{M}_{\text{nenn750V}} = \mathsf{M}_{\text{nenn}} = \text{constant} \\ \mathsf{n}_{\text{max750V}} &= \frac{750 \vee}{540 \vee} \cdot \mathsf{n}_{\text{max}} & \mathsf{n}_{\text{nenn750V}} = \frac{750 \vee}{540 \vee} \cdot \mathsf{n}_{\text{nenn}} \end{split}$$

Parallel connection of two primary parts at one drive controller Fig.4-3: Conversion example to DC bus voltage 750VDC

The following interrelations exist for the parallel connection of two primary parts at one drive controller:

- Doubling of currents and feed forces (unless limited by the drive controller)
- Speed v_{FMAX} and v_{NENN} as for single arrangement
- The same motor and voltage constant (k_{iF}, k_E)
- Halved motor resistances and inductances.

Fig.4-4: Characteristic curve about force vs. velocity at for single and parallel connection of primary parts to one drive controller

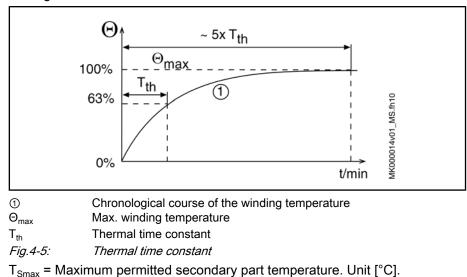
For the parallel connection of two primary parts to one drive controller this document specifies the corresponding selection data for motor – controller combinations and the motor parameters for commissioning (see chapter 10 "Motor-Controller-Combinations" on page 159 and chapter 14 "Commissioning, Operation and Maintenance" on page 227).

4.1.3 Characteristics

Maximum Force

 F_{max} = Available maximum force at maximum voltage I_{max}. Unit Newton [N]. The maximum torque that can be attained depends on the drive control device used.

Continuous Nominal Force	F_{dN} = Available continuous nominal force in operating mode S1 (contiuous operation) at standstill Unit Newton [N].
Maximum Current	I_{max} = Maximum voltage (effective value) of the motor at F_{max} . Unit Ampère [A].
Continuous Nominal Voltage	I_{dN} = Phase current (effektive value) of the motor at a nominal velocity and load with continuous nominal force. Unit Ampère [A].
Maximum Velocity	v_{Fmax} = From the manufacturer defined maximum velocity with maximum force F_{max} . Unit [m/min]. The velocity reached depends on the DC bus voltage of the used drive control device.
Nominal Velocity	n_N = Reachable nominal velocity at contiuous nominal force F_{dN} . Unit [m/min]. The velocity reached depends on the DC bus voltage of the used drive control device.
Force Constant	K_{iFN} = Relation of force increase to rise the force-forming current. Unit [N/A]. Valid up to continuous nominal current I_{dN} .
Voltage Constant at 20 °C	K_{EMF} = Electromagnetic force. Induced motor voltage (effective value) dependend on the travel velocity regarding the velocity 1m/s. unit [Vs/m].
Winding Resistance at 20 °C	R_{12} = Measured winding resistance between two strands. Unit Ohm [Ω].
Winding Inductivity	L_{12} = Measured winding inductivity between two strands. Unit [mH]. The defined measuring values are fluctuating due to boundary effects. The specifications are typical values, determined with a measuring voltage of 1mA at a measuring frequence of 1kHz.
Necessary Power Wire Cross-Sec- tion	A_L = Rated for cables with current rating according to VDE0298-4 (1992) and installation type B2 according to EN 60204-1 (1993) at 40°C ambient temperature. The power wire cross section in mm ² , specified in the data sheets, can deviate depending on the selected type of connection - plug or terminal box. Therefore, when select- ing the appropriate power cable, observe the information in chapter chapter 8 "Electrical Connection" on page 87and the documentation for Rexroth con- nection cables, MNR R911280894 and MNR R911322948.
Rated Power Loss	P_{VN} = power loss in operation mode S1 (continuous operation) at nominal velocity $v_{N}.$ Unit Watt [W].
Nominal Air Gap δ	Measurable nominal air gap between primary and secondary part, specified from the manufacturer. Unit Millimeter [mm].
Pole Width	T_P = Distance from pole center to pole center of the magnets on the secondary part. Unit Millimeter [mm].
Attractive Force	F_{ATT} = Maximum attractive force among primary and secondary part at nominal air gap δ and currentless primary part. Unit Newton [N]. Refer to the notes in chapter 9.5 "Feed and Attractive Forces" on page 111.
Primary Part Mass Standard En-	m_{PS} = Mass of the primary part with standard encapsulation. Unit Kilogram [kg].
capsulation Primary Part Mass Thermal Encap-	m_{PT} = Mass of the primary part with thermo encapsulation. Unit Kilogram [kg].
sulation Secondary Part Mass	m_s = Mass of the secondary part relating on the length 1 m. Unit [kg/m].
Required Coolant Flow	Q_{min} = Necessary coolant flow to keep the specified continuous feed force. Unit [I/min]. Heed the notes in chapter 9.6 "Motor Cooling System" on page 116 to determine the coolant flow.
Constant to Determine the Pres- sure Loss	k_{dp} = Constant to determine the pressure loss within the motor internal coolant system with coolant water. Heed the notes in chapter 9.6 "Motor Cooling System" on page 116 to determine the pressure loss.


Pressure Loss Δp at QN	Pressure los	s within t	the inter	nal coola	nt circuit	t of the n	notor. Hee	d the notes	in
	chapter 9.6	"Motor C	Cooling	System"	on page	116 to	determine	the pressu	re
	loss.								

Permissible Inlet Pressure p_{max} = Maximum permitted inlet pressure of the liquid cooling on the motor with coolant water. Unit [bar].

Coolant Inlet Temperature 3in Permissible coolant inlet temperatures. Unit [°C]. The coolant inlet temperature should be maximum 5°C lower than the existing ambient temperature T_{um}. At a higher temperature difference, danger of condensation exists! Please, observe the notes in chapter 9.6 "Motor Cooling System" on page 116 about coolant inlet temperature.

Temperature Rise Δ **\varthetaN at PvN** Temperature difference between coolant inlet and outlet temperature during operation with liquid cooling (coolant water) and rated power loss P_{vN}. Unit Kelvin [K].

Thermal Time Constant T_{th} = Duration of the temperature rise to 63 % of the final temperature of the winding under load with continuous nominal force in S1-operation and liquid cooling.

Permitted Secondary Part Temperature Admissible Ambient Temperature during Operation Permissible Storage and Transport Temperature Degree of Protection Insulation Class

T_{UM} = Permitted ambient temperatures. Unit [°C].

 T_1 = Permissible storage and transport temperatures Unit [°C].

Protection class according to EN 60034-5.

Insulation class according to EN 60034-1.

4.2 Technical Data - Frame Size MLP040

Description	Symbol	Unit		MLF	2040	
Motor data 1)						
Frame length			A	В		
Winding code			0300	0150	0250	0300
Appropriate secondary parts			MLS040S-3A-****-NNNN			IN
Maximum force ²⁾	F _{max}	Ν	800	1150		
Continuous nominal force	F _{dN}	N	250	370		
Maximum current	I _{max}	А	20	20	27	35
Continuous nominal voltage	I _{dN}	А	4.2	4.2	5.3	6
Maximum velocity at F _{max} ³⁾	V _{Fmax}	m/min	300	150	250	300
Nominal velocity ³⁾	V _N	m/min	500	300	400	500

Description	Symbol	Unit	MLP040					
Force constant	K _{iFN}	N/A	60	88	70	62		
Voltage constant ⁴⁾	K _{EMF}	Vs/m	38.14	57	43	34		
Winding resistance at 20°C	R ₁₂	ohms	8.7	12.9	6.5	5		
Winding inductivity		L ₁₂	mH	50	84	51	31	
Minimum cross-section connection c	able ⁵⁾	A _{PL}	mm²		1.5			
Rated power loss		P_{vN}	W	400		550		
Nominal air gap		δ	mm		1.0	+0.66 -0.4		
Pole width		T _p	mm		37	7.5		
Attractive force ⁶⁾		F _{ATT}	N	1,200		1,700		
Primary part mass standard encapsu	lation	m _{PS}	kg	4.7	6.1			
Primary part mass thermal encapsula	ation	m _{PT}	kg	6.1	8.1			
Secundary part mass		m _s	kg/m	5.4				
Necessary coolant flow $\Delta \vartheta_N^{-10)}$		Q _{min}	l/min	0.57	0.57 0.79			
Constant to determine the pressure	Standard encapsulation	Ŀ		0.16		0.16		
loss ⁷⁾	Thermal encapsulation	k _{dp}		0.16		0.16		
Pressure loss at Q_N	Standard encapsulation	Δр	bar	0.06		0.10		
	Thermal encapsulation	<u> </u>	bui	0.06 0.11				
Permissible coolant inlet pressure		p _{max}	bar	10				
Coolant inlet temperature ⁸⁾		ϑ _{in}	°C		+15 +40			
Temperature rise at P _{vN} ⁹⁾		$\Delta \vartheta_{N}$	K		1	0		
Thermal time constant		T _{th}	min		6			
Permitted secondary part temperatur	e	T _{Smax}	°C		7	0		
Admissible ambient temperature dur	ng Operation	T _{amb}	°C	0 +40				
Perm. storage and transport temperature			°C	-20 +60				
Degree of protection				IP65				
Insulation class according to DIN VD					=			

1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V_{DC}.

2) The maximum reachable force depends on the drive control device used.

3) The reachable velocities depend on the supply voltage.

4) EMF = electromagnetic force. Effective value referring to 1 m/s.

5) Please note the information on the power wire cross section in "Necessary Power Wire Cross-Section" on page 20.

6) Between primary and secondary part at nominal air gap, primary part currentless.

7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.

8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).

9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

i. p. = in preparation.

Fig.4-6: Data sheet frame size MLP040

Motor Characteristic Curves Frame Size 040

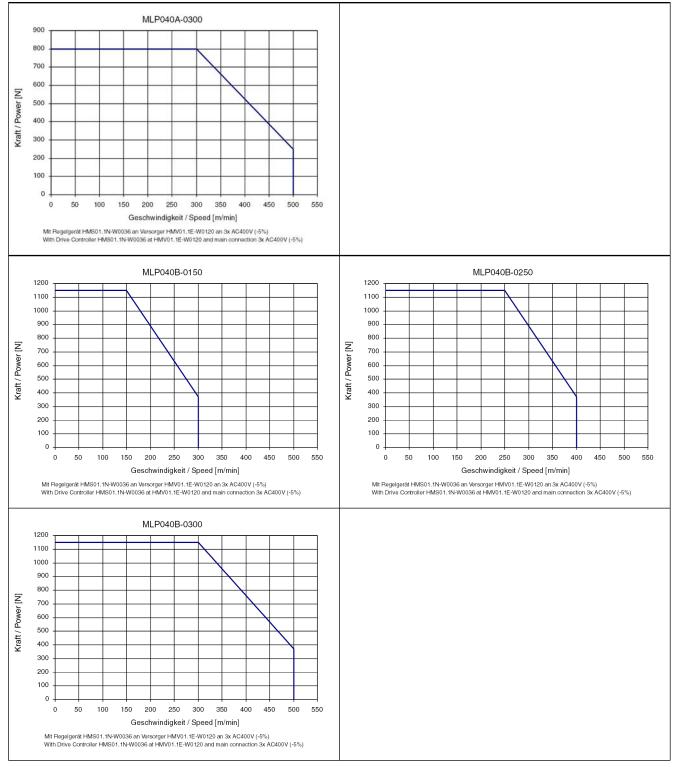
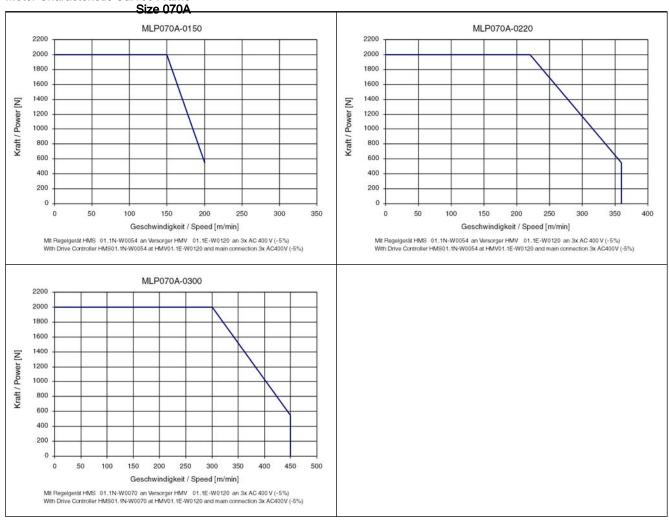


Fig.4-7:

Motor Characteristic Curves Frame Size 040

4.3 Technical Data - Frame Size MLP070

4.3.1 Frame Size MLP070A


Description		Symbol	Unit	MLP070A			
Motor data 1)							
Winding code				0150	0220	0300	
Appropriate secondary parts				MLS070S-3A-****- NNNN			
Maximum force ²⁾		F _{max}	N	2,000			
Continuous nominal force		F _{dN}	Ν	550			
Maximum current		I _{max}	Α	36	42	55	
Continuous nominal voltage		I _{dN}	А	5.5	6.3	10.5	
Maximum velocity at F _{max} ³⁾		V _{Fmax}	m/min	150	220	300	
Nominal velocity ³⁾		V _N	m/min	200	360	450	
Force constant		K_{iFN}	N/A	100	87	52	
Voltage constant ⁴⁾		K_{EMF}	Vs/m	79.5	47	20	
Winding resistance at 20°C		R ₁₂	ohms	9	3.3	2.9	
Winding inductivity		L ₁₂	mH	51	25.7	15	
Minimum cross-section connection cable ⁵⁾		A _{PL}	mm²	1.5			
Rated power loss		P_{vN}	W	780			
Nominal air gap		δ	mm	1.0 ^{+0.55} -0.4			
Pole width		T _p	mm	37.5			
Attractive force 6)		F _{ATT}	Ν	2,900			
Primary part mass standard encapsulation		m _{PS}	kg	8.4			
Primary part mass thermal encapsulation		m _{PT}	kg	10.9			
Secundary part mass		m _s	kg/m	9.4			
Necessary coolant flow $\Delta \vartheta_N^{-10)}$		Q _{min}	l/min	1.12			
Constant to determine the pressure loss ⁷⁾	Standard encapsulation	k _{dp}		0.18			
	Thermal encapsulation	Мар		0.18			
Pressure loss at Q _N	Standard encapsulation Thermal encapsulation	Δр	bar	0.22			
Permissible coolant inlet pressure		p _{max}	bar	10			
Coolant inlet temperature ⁸⁾		. ອ _{in}	°C	+15 +40			
Temperature rise at P_{vN}^{9}		Δϑ _N	К	10			
Thermal time constant		T _{th}	min	6			
Permitted secondary part temperature		T _{Smax}	°C	70			
Admissible ambient temperature during operation		T _{amb}	°C	0 +40			
Perm. storage and transport temperature		Τ _L	°C	-20 +60			
Degree of protection					IP65		

Description	Symbol	Unit	MLP070A			
Insulation class according to DIN VDE 0530-1			F			
1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V _{DC} .						
2) The maximum reachable force depends on the drive control device used	J.					
3) The reachable velocities depend on the supply voltage.						
4) EMF = electromagnetic force. Effective value referring to 1 m/s.						
5) Please note the information on the power wire cross section in "Necessary Power Wire Cross-Section" on page 20.						
6) Between primary and secondary part at nominal air gap, primary part cu	rrentless.					
7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" o page 116.						
8) The coolant inlet temperature should be max. 5°C lower than the existing	g ambient te	mperature (d	langer of condensation!).			

9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

Fig.4-8: Data sheet frame size MLP070A

Motor Characteristic Curves Frame

Fig.4-9: Motor Characteristic Curves Frame Size 070A

4.3.2 Frame Size MLP070B

Description		Symbol	Unit	MLP070B				
Motor data 1)								
Winding code				0100	0120	0150	0250	0300
Appropriate secondary parts				MLS070S-3A-****-NNNN				
Maximum force ²⁾		F _{max}	N	2,600				
Continuous nominal force		F _{dN}	N	820				
Maximum current		I _{max}	A	28	42	48	55	70
Continuous nominal voltage		I _{dN}	A	5.5	5.8	6.2	10	12
Maximum velocity at F _{max} 3)		V _{Fmax}	m/min	100	120	150	250	300
Nominal velocity ³⁾		V _N	m/min	200	220	260	400	450
Force constant		K _{iFN}	N/A	149	141	132	82	68
Voltage constant ⁴⁾		K_{EMF}	Vs/m	85	80	65	43	60
Winding resistance at 20°C			ohms	15.1	9.2	6.1	3	2.4
Winding inductivity		L ₁₂	mH	90	55	38	17	13
Minimum cross-section connection ca	able ⁵⁾	A _{PL}	mm²	1.5				
Rated power loss		P _{vN}	W	900				
Nominal air gap		δ	mm	1.0 + 0.55 -0.4				
Pole width		Τ _p	mm	37.5				
Attractive force 6)		F _{ATT}	N	3,750				
Primary part mass standard encapsulation		m _{PS}	kg	10.4				
Primary part mass thermal encapsulation		m _{PT}	kg	13.4				
Secundary part mass		m _s	kg/m	9.4				
Necessary coolant flow $\Delta \vartheta_{N}^{-10)}$		Q _{min}	l/min	1.29				
Constant to Determine the Pressure Loss ⁷⁾	Standard encap- sulation	k			0.18			
	Thermal encapsu- lation	k _{dp}		0.18				
Pressure loss at Q _N	Standard encap- sulation	An	har		0.28			
	Thermal encapsu- lation	Δр	bar	0.29				
Permissible coolant inlet pressure		p _{max}	bar	10				
Coolant inlet temperature ⁸⁾		ֆ _{in}	°C	+15 +40				
Temperature rise at P _{vN} ⁹⁾		Δϑ _N	К	10				
Thermal time constant		T _{th}	min	5.7				
Permitted secondary part temperature		T _{Smax}	°C	70				
Admissible ambient temperature during operation		T _{amb}	°C	0 +40				
Perm. storage and transport temperature		TL	°C	-20 +60				
Degree of protection						IP65		

Description	Symbol	Unit	MLP070B
Insulation class according to DIN VDE 0530-1			F

1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V_{DC} .

2) The maximum reachable force depends on the drive control device used.

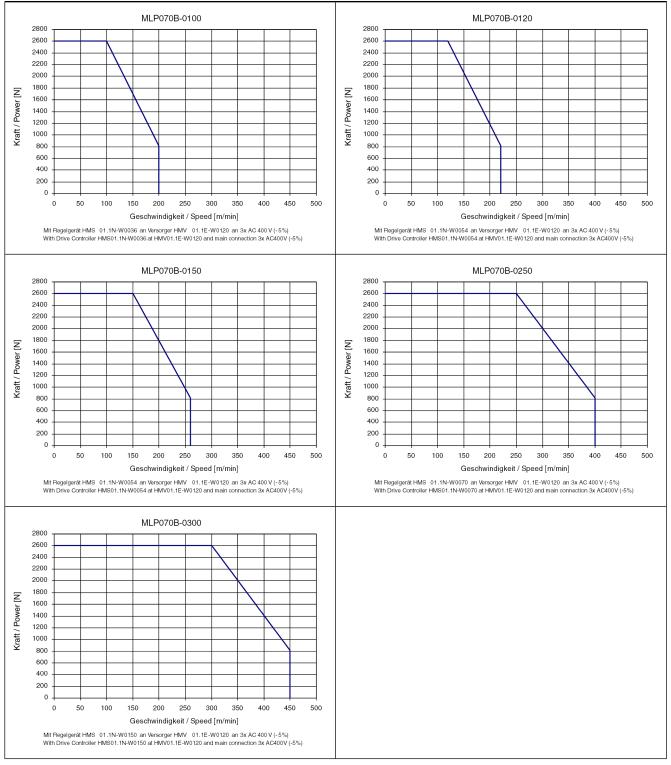
3) The reachable velocities depend on the supply voltage.

4) EMF = electromagnetic force. Effective value referring to 1 m/s.

5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient temperature of 40°C. When using other cables, larger cross sections may be necessary. For further notes regarding connection and power cables see chapter 8.1.1 "Power Cable on the Primary Part" on page 87.

6) Between primary and secondary part at nominal air gap, primary part currentless.

7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.


8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).

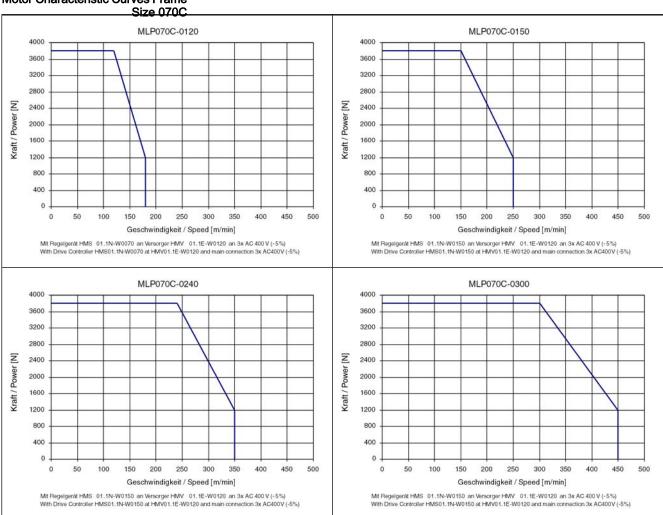
9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

Fig.4-10: Data sheet frame size MLP070B

Motor Characteristic Curves Frame Size 070B

Motor Characteristic Curves Frame Size 070B


4.3.3 Frame Size MLP070C

Description		Symbol	Unit	MLP070C				
Motor data 1)								
Winding code			0120	0150	0240	0300		
Appropriate secondary p	parts				MLS070S-3/	A-***-NNNN		
Maximum force ²⁾		F _{max}	N		3,8	300		
Continuous nominal force	e	F _{dN}	N		1,2	200		
Maximum current		I _{max}	A	55	70	90	110	
Continuous nominal volt	-	I _{dN}	A	8.9	11.7	13	19	
Maximum velocity at F _{ma}	3) ax	V _{Fmax}	m/min	120	150	240	300	
Nominal velocity 3)		V _N	m/min	180	250	350	450	
Force constant		K _{iFN}	N/A	135	98.3	92	63	
Voltage constant 4)		K _{EMF}	Vs/m	78	91	49	38	
Winding resistance at 20)°C	R ₁₂	ohms	5.7	4.1	2	1.5	
Winding inductivity		L ₁₂	mH	36	22	11	7.5	
Minimum cross-section	connection cable 5)	A _{PL}	mm²	1.5 2.5				
Rated power loss		P_{vN}	W	1,100				
Nominal air gap		δ	mm	1.0 + 0.55				
Pole width		Τ _p	mm	37.5				
Attractive force 6)		F _{ATT}	N	5,500				
Primary part mass stand	lard encapsulation	m _{PS}	kg	14.3				
Primary part mass therm	nal encapsulation	m _{PT}	kg	18.4				
Secundary part mass		m _s	kg/m	9.4				
Necessary coolant flow	∆ϑ _N ¹⁰⁾	Q _{min}	l/min	1.58				
Constant to determine	Standard encapsulation	k _{dp}			0.	19		
the pressure loss 7)	Thermal encapsulation	Мф			0.	19		
Pressure loss at Q _N	Standard encapsulation	Δр	bar			43		
	Thermal encapsulation					43		
Permissible coolant inlet		P _{max}	bar		-	0		
Coolant inlet temperatur		ϑ _{in}	°C			+40		
Temperature rise at P _{vN} ⁹⁾		$\Delta \vartheta_N$	K		10			
Thermal time constant		T _{th}	min		6.6			
Permitted secondary part temperature		T _{Smax}	°C	70				
	perature during operation	T _{amb}	°C		0 +40			
Perm. storage and trans	port temperature	TL	°C		-20 +60			
Degree of protection					IP	65		

Description	Symbol	Unit	MLP070C					
Insulation class according to DIN VDE 0530-1			F					
1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V _{DC} .								
2) The maximum reachable force depends on the	drive contro	l device used	l.					
3) The reachable velocities depend on the supply	voltage.							
4) EMF = electromagnetic force. Effective value re	eferring to 1	m/s.						
5) Please note the information on the power wire of	cross sectior	in "Necessa	ary Power Wire Cross-Section" on page 20.					
6) Between primary and secondary part at nomina	al air gap, pri	mary part cu	rrentless.					
7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.								
8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).								
9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.								

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

Fig.4-12: Data sheet frame size MLP070C

Motor Characteristic Curves Frame

Fig.4-13: Motor Characteristic Curves Frame Size 070C

4.4 Technical Data - Frame Size MLP100

4.4.1 Frame Size MLP100A

Description		Symbol	Unit	MLP100A				
Motor data 1)								
Winding code				0090				
Appropriate secondary p	oarts				MLS100S-3/	4-****-NNNN		
Maximum force 2)		F _{max}	N		3,7	'50		
Continuous nominal force	e	F_{dN}	N		1,1	80		
Maximum current		I _{max}	A	38	44	55	70	
Continuous nominal volt		I _{dN}	A	6.6	8	10	12	
Maximum velocity at Fma	ax ³⁾	V _{Fmax}	m/min	90	120	150	190	
Nominal velocity 3)		V _N	m/min	150	190	220	290	
Force constant		K_{iFN}	N/A	186	148	118	98	
Voltage constant 4)		K _{EMF}	Vs/m	162	89	77	59	
Winding resistance at 20	0°C	R ₁₂	ohms	12.2	7.8	6.9	3.2	
Winding inductivity		L ₁₂	mH	70	42	31	16	
Minimum cross-section of	connection cable ⁵⁾	A _{PL}	mm²	1.5				
Rated power loss		P_{vN}	W	1,500				
Nominal air gap		δ	mm	1.0 ^{+0.55}				
Pole width		т _р	mm	37.5				
Attractive force 6)		F _{ATT}	N		5,400			
Primary part mass stand	ard encapsulation	m _{PS}	kg	13.5				
Primary part mass therm	nal encapsulation	m _{PT}	kg	17				
Secundary part mass		m _s	kg/m	13.4				
Necessary coolant flow	$\Delta \vartheta_{N}^{10)}$	Q_{min}	l/min	2				
Constant to Determine	Standard encapsulation	k _{dp}				19		
the Pressure Loss 7)	Thermal encapsulation	мар			0.			
Pressure loss at Q _N	Standard encapsulation	Δр	bar		0.:			
	Thermal encapsulation					.3		
Permissible coolant inlet	·	P _{max}	bar			0		
Coolant inlet temperature ⁸⁾		ϑ _{in}	°C			+40		
Temperature rise at P _{vN} ⁹⁾		Δϑ _N	K		10			
Thermal time constant		T _{th}	min		6.4			
Permitted secondary part temperature		T _{Smax}	°C		70			
	perature during operation	T _{amb}	°C		0			
Perm. storage and trans	port temperature	TL	°C		-20 +60			
Degree of protection					IP	65		

Description	Symbol	Unit	MLP100A						
Insulation class according to DIN VDE 0530-1			F						
1) The determined values are root-mean-square a V _{DC} .	according to	IEC 60034-1	, if no others are specified. Reference value 540						
2) The maximum reachable force depends on the drive control device used.									
3) The reachable velocities depend on the supply voltage.									
4) EMF = electromagnetic force. Effective value referring to 1 m/s.									
5) Please note the information on the power wire cross section in "Necessary Power Wire Cross-Section" on page 20.									
6) Between primary and secondary part at nomina	al air gap, pri	mary part cu	rrentless.						
7) Coolant water. To determine the pressure drop page 116.	depending o	on the coolar	t flow see chapter 9.6 "Motor Cooling System" or						
8) The coolant inlet temperature should be max. 5	°C lower tha	an the existin	g ambient temperature (danger of condensation!).						
9) Operation with liquid cooling, coolant water, coo	olant inlet ter	mperature 30)°C.						
10) For further notes regarding flow rate, refer to o	chapter 9.6	"Motor Coolir	ng System" on page 116.						
Fig.4-14:	Fig.4-14: Data sheet frame size MLP100A								
Motor Characteristic Curves Frame Size 100A		1							
MLP100A-0090			MLP100A-0120						

MLP100A-0120 MLP100A-0090 Kraft / Power [N] Ξ Power Kraft Geschwindigkeit / Speed [m/min] Geschwindigkeit / Speed [m/min] Mit Regelgerät HMS 01.1N-W0054 an Versorger HMV 01.1E-W0120 an 3x AC 400 V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%) Mit Regelgerät HMS 01.1N-W0054 an Versorger HMV 01.1E-W0120 an 3x AC 400 V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%) MLP100A-0150 MLP100A-0190 Kraft / Power [N] Ξ Power Kraft / Geschwindigkeit / Speed [m/min] Geschwindigkeit / Speed [m/min] Mit Regelgerät HMS 01.1N-W0070 an Versorger HMV 01.1E-W0120 an 3x AC 400 V (-5%) With Drive Controller HMS01.1N-W0070 at HMV01.1E-W0120 and main connection 3x AC400V (-5%) Mit Regelgerät HMS 01.1N-W0150 an Versorger HMV 01.1E-W0120 an 3x AC 400 V (~5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (~5%)

Fig.4-15: Motor Characteristic Curves Frame Size 100A

4.4.2 Frame Sizes MLP100B, MLP100C

Description		Symbol	Unit	MLP100				
Motor data 1)			ĺ					
Frame length			E	3		С		
Winding code				0120	0250	0090	0120	0190
Appropriate secondary p	parts					0S-3A-***	*-NNNN	
Maximum force 2)		F _{max}	N	5,6	500		7,150	
Continuous nominal force	ce	F _{dN}	N	1,7	785		2,310	
Maximum current		I _{max}	A	70	130	90	85	140
Continuous nominal volt	age	I _{dN}	A	12	22	13	15	23
Maximum velocity at F _{ma}	3) ax	v_{Fmax}	m/min	120	250	90	120	190
Nominal velocity 3)		V _N	m/min	190	350	170	190	290
Force constant		K_{iFN}	N/A	149	81	178	154	100
Voltage constant 4)		K _{EMF}	Vs/m	87	49	100	89	59
Winding resistance at 20)°C	R ₁₂	ohms	4.5	2	6	3.9	1.5
Winding inductivity		L ₁₂	mH	25	9	38	22	8
Minimum cross-section	connection cable ⁵⁾	A _{PL}	mm²	1.5	2.5	1.5	1.5	4
Rated power loss		P_{vN}	W	1,300 1,600				
Nominal air gap		δ	mm	1.0 ^{+0.55} -0.4				
Pole width		Τ _p	mm			37.5		
Attractive force 6)		F _{ATT}	N	8,0	000		10,400	
Primary part mass stand	lard encapsulation	m _{PS}	kg	18	18.7 24			
Primary part mass thern	nal encapsulation	m _{PT}	kg	23	23.3 29.7			
Secundary part mass		m _s	kg/m			13.4		
Necessary coolant flow	∆ϑ _N ¹⁰⁾	Q _{min}	l/min	1.	87		2.3	
Constant to Determine	Standard encapsulation	k _{dp}		0.	18		0.19	
the Pressure Loss 7)	Thermal encapsulation	мар			18		0.19	
Pressure loss at Q _N	Standard encapsulation	Δр	bar	0.			0.8	
Dermissible sealant inlet	Thermal encapsulation	-	hor	0.	54	10	0.82	
Permissible coolant inlet		P _{max} ϑ _{in}	bar °C			+15 +4(<u></u>	
Coolant inlet temperatur			к К				J	
Temperature rise at $P_{VN}^{(9)}$		Δϑ _N		 	10			
Thermal time constant		T _{th}	min	· · ·	7 6			
Permitted secondary pa		T _{Smax}	°C		70			
	perature during operation	T _{amb}	°C		0 +40			
Perm. storage and trans	port temperature	TL	°C	 		-20 +60)	
Degree of protection					IP65			

Description	Symbol	Unit	MLP100					
Insulation class according to DIN VDE 0530-1			F					
1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V _{DC} .								
2) The maximum reachable force depends on the	drive contro	l device usec	l.					
3) The reachable velocities depend on the supply	voltage.							
4) EMF = electromagnetic force. Effective value re	eferring to 1	m/s.						
5) Please note the information on the power wire of	cross sectior	in "Necessa	ary Power Wire Cross-Section" on page 20.					
6) Between primary and secondary part at nomina	al air gap, pri	mary part cu	rrentless.					
7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" or page 116.								
8) The coolant inlet temperature should be max. 5	°C lower tha	in the existing	g ambient temperature (danger of condensation!).					
9) Operation with liquid cooling, coolant water, coo	olant inlet ter	mperature 30	°C.					

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

Fig.4-16: Data Sheet Frame Size MLP100B, MLP100C

Motor Characteristic Curves Frame Size 100B, 100C

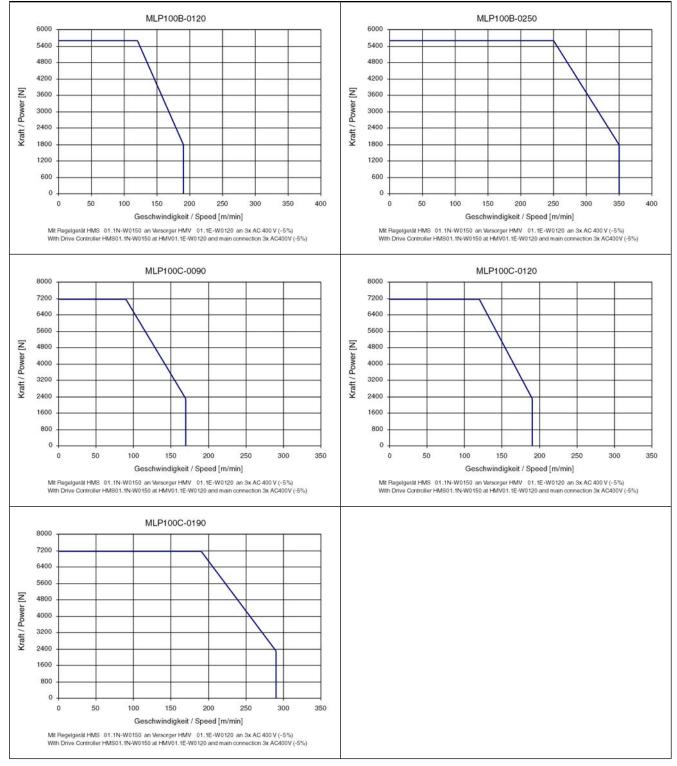
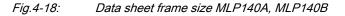


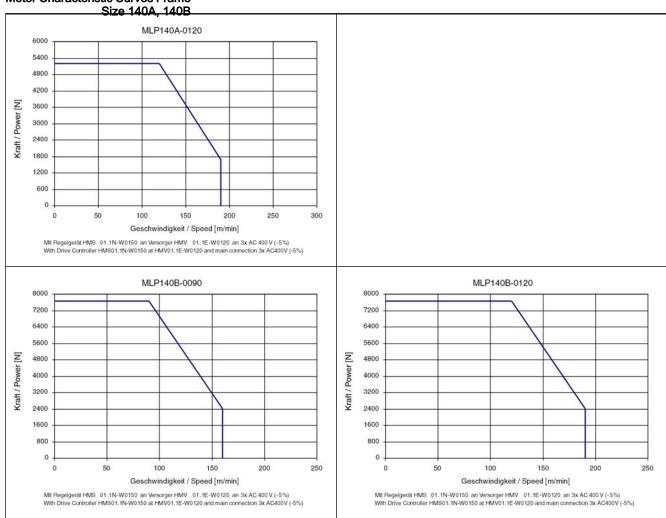
Fig.4-17:

Motor Characteristic Curves Frame Size 100B, 100C

4.5 Technical Data - Frame Size MLP140

4.5.1 Frame Sizes MLP140A, MLP140B


Description		Symbol	Unit	MLP140			
Motor data 1)							
Frame length				A		В	
Winding code				0120	0090	0120	
Appropriate secondary p	arts				S140S-3A-****-N	NNN	
Maximum force 2)		F _{max}	N	5,200		350	
Continuous nominal forc	e	F _{dN}	N	1,680	2,4	115	
Maximum current		I _{max}	A	70	85	105	
Continuous nominal volta	age	I _{dN}	A	12	15	18	
Maximum velocity at F _{ma}	x ³⁾	V _{Fmax}	m/min	120	90	120	
Nominal velocity 3)		V _N	m/min	190	160	190	
Force constant		K_{iFN}	N/A	140	161	134	
Voltage constant 4)		K_{EMF}	Vs/m	89	142	89	
Winding resistance at 20	о°С	R ₁₂	ohms	4	4.3	2.6	
Winding inductivity		L ₁₂	mH	23	20.6	16	
Minimum cross-section of	connection cable ⁵⁾	A _{PL}	mm²	1.5	2	.5	
Rated power lossRated	power loss	P_{vN}	W	1300	25	512	
Nominal air gap		δ	mm	1.0 ^{+0.65} -0.4			
Pole width		Τ _p	mm		37.5		
Attractive force 6)		F _{ATT}	N	7,500	11,	000	
Primary part mass stand	ard encapsulation	m _{PS}	kg	17	24	4.5	
Primary part mass therm	al encapsulation	m _{PT}	kg	21.2	30).1	
Secundary part mass		m _s	kg/m		18.8		
Necessary coolant flow	∆ϑ _N ¹⁰⁾	Q _{min}	l/min	1.87	3	.6	
Constant to Determine	Standard encapsulation	k _{dp}		0.18	0.	18	
the Pressure Loss 7)	Thermal encapsulation	м _{dp}		0.19		19	
Pressure loss at Q_N	Standard encapsulation Thermal encapsulation	Δр	bar	0.54 0.56		87 89	
Permissible coolant inlet	pressure	p _{max}	bar		10		
Coolant inlet temperature	e ⁸⁾	ϑ _{in}	°C		+15 +40		
	Temperature rise at P_{vN}^{9}		K		10		
Thermal time constant		T _{th}	min	6 6.8		6.8	
Permitted secondary par	t temperature	T _{Smax}	°C 70				
Admissible ambient tem	Admissible ambient temperature during operation		°C		0 +40		
Perm. storage and trans	port temperature	T _{amb} T _L	°C		-20 +60		
Degree of protection					IP65		


Description	Symbol	Unit	MLP140					
Insulation class according to DIN VDE 0530-1			F					
1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540								
V _{DC} .								
2) The maximum reachable force depends on the	drive contro	l device used	1.					
3) The reachable velocities depend on the supply	voltage.							
4) EMF = electromagnetic force. Effective value re	eferring to 1	m/s.						
5) Please note the information on the power wire	cross sectior	n in "Necessa	ary Power Wire Cross-Section" on page 20.					
6) Between primary and secondary part at nomina	al air gap, pri	mary part cu	rrentless.					
7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.								
0) The evolutit is let temperature should be may E	°C lower the	n the eviction	a ambient temperature (denger of condenection)					

8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).

9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

Motor Characteristic Curves Frame

Fig.4-19: Motor Characteristic Curves Frame Size 140A, 140B

4.5.2 Frame Size MLP140C

Description		Symbol	Unit	MLP140C				
Motor data 1)								
Winding code				0050	0120	0170	0350	
Appropriate secondary p	arts				MLS140S-3A-****-NNNN			
Maximum force ²⁾		F_{max}	N			000		
Continuous nominal force	e	F_{dN}	N		3,1	150		
Maximum current		I _{max}	A	70	125	140	260	
Continuous nominal volt	age	I _{dN}	A	13	21	29	53	
Maximum velocity at F _{ma}	3) IX	V _{Fmax}	m/min	50	120	170	350	
Nominal velocity 3)		V _N	m/min	110	190	250	400	
Force constant		K_{iFN}	N/A	242	150	109	59	
Voltage constant 4)		K_{EMF}	Vs/m	67	96	68	i.p.	
Winding resistance at 20	0°C	R ₁₂	ohms	5,1	2.5	1.4	0.5	
Winding inductivity		L ₁₂	mH	27	14	7	3	
Minimum cross-section of	connection cable ⁵⁾	A _{PL}	mm²	1.5	2.5	4	10	
Rated power loss		P_{vN}	W		2,0	000		
Nominal air gap		δ	mm	1.0 ^{+0.56}				
Pole width		Tp	mm	37.5				
Attractive force 6)		F _{ATT}	N	14,400				
Primary part mass stand	ard encapsulation	m _{PS}	kg	32				
Primary part mass therm	al encapsulation	m _{PT}	kg	38.9				
Secundary part mass		m _s	kg/m	18.8				
Necessary coolant flow	∆ϑ _N ¹⁰⁾	Q _{min}	l/min	2.87				
Constant to Determine	Standard encapsulation	k			0.	18		
the Pressure Loss 7)	Thermal encapsulation	k _{dp}			0.	19		
Pressure loss at Q _N	Standard encapsulation	Δр	bar			15		
	Thermal encapsulation					18		
Permissible coolant inlet	·	p _{max}	bar		-	0		
Coolant inlet temperatur		ֆ in	°C			+40		
Temperature rise at P _{vN} ⁹⁾		$\Delta \vartheta_{N}$	K			0		
Thermal time constant		T _{th}	min		6			
Permitted secondary part temperature		T_{Smax}	°C		70			
Admissible ambient tem	perature during operation	T_{amb}	°C		0 +40			
Perm. storage and trans	port temperature	TL	°C		-20 +60			
Degree of protection					IP	65		

Description	Symbol	Unit	MLP140C						
Insulation class according to DIN VDE 0530-1			F						
1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540									
V _{DC} .									
2) The maximum reachable force depends on the drive control device used.									
3) The reachable velocities depend on the supply	3) The reachable velocities depend on the supply voltage.								
4) EMF = electromagnetic force. Effective value re	ferring to 1 r	n/s.							
5) Please note the information on the power wire of	cross section	in "Necessa	ry Power Wire Cross-Section" on page 20.						
6) Between primary and secondary part at nomina	l air gap, pri	mary part cu	rrentless.						
7) Coolant water. To determine the pressure drop page 116.	7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.								
8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).									
9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.									

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

i. p. = in preparation.

Fig.4-20: Data sheet frame size MLP140C

Motor Characteristic Curves Frame Size 140C

Fig.4-21: Motor Characteristic Curves Frame Size 140C

4.6 Technical Data - Frame Size MLP200

4.6.1 Frame Sizes MLP200A, MLP200B

Description	Symbol	Unit	MLP200				
Motor data ¹⁾							
Frame length				۹	E	В	
Winding code			0090	0120	0040	0120	
Appropriate secondary parts				MLS200S-3/	A-****-NNNN		
Maximum force ²⁾	F _{max}	N	7,4	150	10,	900	
Continuous nominal force	F _{dN}	N	2,415		3,4	65	
Maximum current	I _{max}	A	70	88	70	130	
Continuous nominal voltage	I _{dN}	A	13	16	13	22	
Maximum velocity at F _{max} ³⁾	V _{Fmax}	m/min	90	120	40	120	
Nominal velocity ³⁾	v _N	m/min	170	190	100	190	
Force constant	K _{iFN}	N/A	186	151	267	158	
Voltage constant ⁴⁾	K _{EMF}	Vs/m	100	89	170	89	
Winding resistance at 20°C	R ₁₂	ohms	4.5	2.3	5.8	1.7	
Winding inductivity	L ₁₂	mH	25	14	28	10	
Minimum cross-section connection cable ⁵⁾	A _{PL}	mm²	1.5	2.5	1.5	2.5	

Description	Symbol	Unit	MLP200			
Rated power loss		P _{vN}	W	1,700	2,200	
Nominal air gap		δ	mm	1.0+0.55		
Pole width		Tp	mm	37.5		
Attractive force 6)		F _{ATT}	N	10,700	15,600	
Primary part mass stand	lard encapsulation	m _{PS}	kg	23	33	
Primary part mass therm	nal encapsulation	m _{PT}	kg	28.3	40	
Secundary part mass		m _s	kg/m	26.9		
Necessary coolant flow $\Delta \vartheta_N^{10}$		Q _{min}	l/min	2.44	3.16	
Constant to Determine	Standard encapsulation	k		0.18	0.18	
the Pressure Loss 7)	Thermal encapsulation	k _{dp}		0.19	0.19	
Pressure loss at Q_N	Standard encapsulation	Δр	bar	0.88	1.38	
	Thermal encapsulation			0.9	1.41	
Permissible coolant inlet pressure		p _{max}	bar	10		
Coolant inlet temperatur	e ⁸⁾	ϑ _{in}	°C	+15 +40		
Temperature rise at P_{vN}	9)	∆ϑ _N	К	10		
Thermal time constant		T _{th}	min	6		
Permitted secondary part temperature		T _{Smax}	°C	70		
Admissible ambient temperature during Operation		T _{amb}	°C	0 +40		
Perm. storage and transport temperature		Τ _L	°C	-20 +60		
Degree of protection				IP65		
Insulation class according to DIN VDE 0530-1				F		

1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V_{DC}.

2) The maximum reachable force depends on the drive control device used.

3) The reachable velocities depend on the supply voltage.

4) EMF = electromagnetic force. Effective value referring to 1 m/s.

5) Please note the information on the power wire cross section in "Necessary Power Wire Cross-Section" on page 20.

6) Between primary and secondary part at nominal air gap, primary part currentless.

7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.

8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).

9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

i. p. = in preparation.

Fig.4-22: Data Sheet Frame Size MLP200A, MLP200B

Motor Characteristic Curves Frame Size 200A, 200B

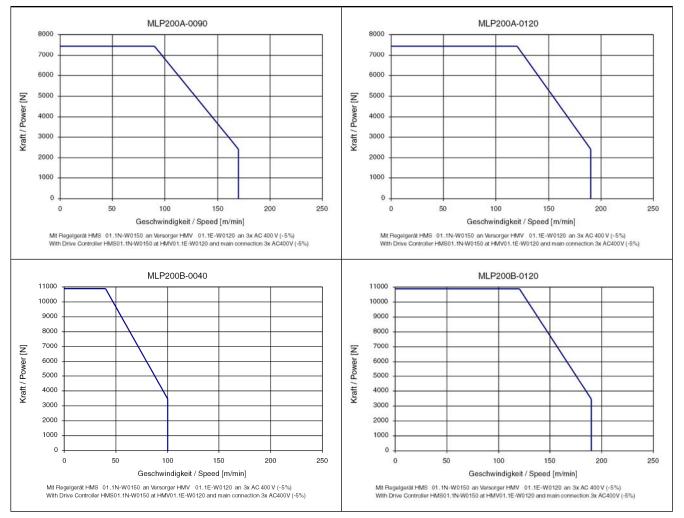


Fig.4-23: Motor Characteristic Curves Frame Size 200A, 200B

4.6.2 Frame Sizes MLP200C, MLP200D

Description	Symbol	Unit	MLP200						
Motor data 1)									
Frame length				С			D		
Winding code			0090	0120	0170	0060	0100	0120	
Appropriate secondary parts				MLS200S-3A-****-NNNN					
Maximum force ²⁾	F _{max}	Ν		14,250			17,750		
Continuous nominal force	F _{dN}	Ν	4,460			5,560			
Maximum current	I _{max}	А	120	175	210	140	210	225	
Continuous nominal voltage	I _{dN}	А	23.3	30	46	28	46	53	
Maximum velocity at F _{max} ³⁾	V _{Fmax}	m/min	90	120	170	60	100	120	
Nominal velocity ³⁾	V _N	m/min	170	190	220	140	180	190	
Force constant	K _{iFN}	N/A	191	149	97	220	121	105	
Voltage constant ⁴⁾	K _{EMF}	Vs/m	114	89	77	216	94	89	
Winding resistance at 20°C	R ₁₂	ohms	2.7	1.7	1.1	2.8	1.6	1.3	
Winding inductivity	L ₁₂	mH	13	8	5	15	8.1	6	
Minimum cross-section connection cable ⁵⁾	A _{PL}	mm²	4	6	10	4	10	10	
Rated power loss	P_{vN}	W		2,700			4,969		

Description		Symbol	Unit	MLP200		
Nominal air gap		δ	mm	1.0 ^{+0.55} -0.4		
Pole width		T _p	mm	37	.5	
Attractive force 6)		F _{ATT}	Ν	20,500	25,400	
Primary part mass sta	ndard encapsulation	m _{PS}	kg	42	51	
Primary part mass the	rmal encapsulation	m _{PT}	kg	50.7	61.3	
Secundary part mass		m _s	kg/m	26	.9	
Necessary coolant flow	ν Δϑ _N ¹⁰⁾	Q _{min}	l/min	3.88	8	
Constant to Determine	Standard encapsula- tion	k _{dp}		0.19	0.19	
the Pressure Loss ⁷⁾	Thermal encapsula- tion			0.19	0.19	
Pressure loss at Q _N	Standard encapsula- tion			1.99	2.4	
	Thermal encapsula- tion	Δр	bar	2.04	2.45	
Permissible coolant inlet pressure		p _{max}	bar	1	0	
Coolant inlet temperat	ure ⁸⁾	ϑ _{in}	°C	+15	. +40	
Temperature rise at P _{vN} ⁹⁾		∆ϑ _N	К	10		
Thermal time constant		T _{th}	min	6.6	6	
Permitted secondary part temperature		T _{Smax}	°C	7	0	
Admissible ambient temperature during Op- eration		T _{amb}	°C	0 +40		
Perm. storage and transport temperature		TL	°C	-20 +60		
Degree of protection				IP	65	
Insulation class according to DIN VDE 0530-1				F		

1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V_{DC}.

2) The maximum reachable force depends on the drive control device used.

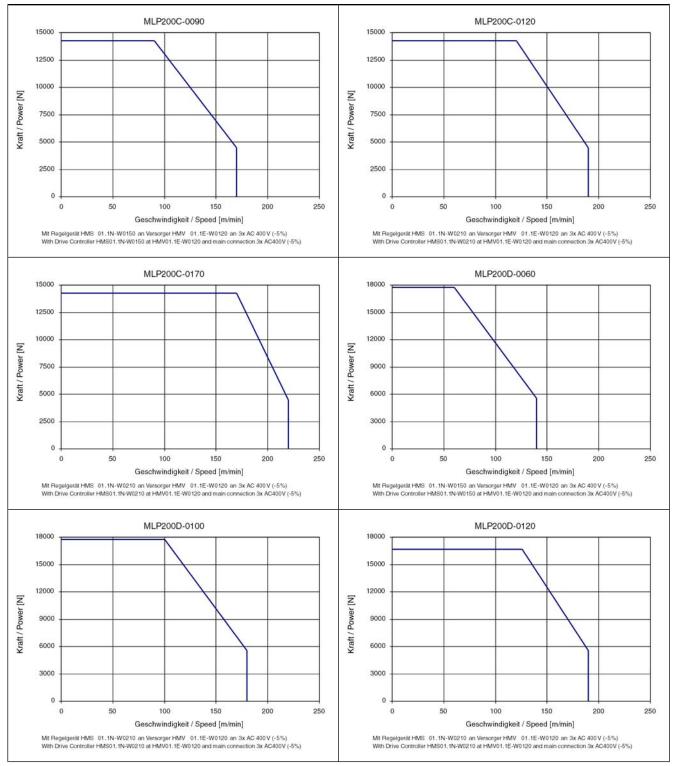
3) The reachable velocities depend on the supply voltage.

4) EMF = electromagnetic force. Effective value referring to 1 m/s.

5) Please note the information on the power wire cross section in "Necessary Power Wire Cross-Section" on page 20.

6) Between primary and secondary part at nominal air gap, primary part currentless.

7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.


8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).

9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.

10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.

Fig.4-24: Data Sheet Frame Size MLP200C, MLP200D

Motor Characteristic Curves Frame Size 200C, 200D

Motor Characteristic Curves Frame Size 200C, 200D

4.7 Technical Data - Frame Size MLP300

Description		Symbol	Unit	MLP300						
Motor data 1)										
Frame length				Â		E	B)	
Winding code				0090	0120	0070	0120	0060	0090	
Appropriate secondary	/ parts			MLS300S-3A-****-HNNN						
Maximum force 2)		F _{max}	N	11,000 16,300			21,	21,500		
Continuous nominal fo	orce	F _{dN}	N	3,350		5,150		6,720		
Maximum current		I _{max}	А	110	138	140	205	140	212	
Continuous nominal ve	oltage	I _{dN}	А	19	23	28	35	29	37	
Maximum velocity at F	: 3) max	v_{Fmax}	m/min	90	120	70	120	60	90	
Nominal velocity 3)		V _N	m/min	160	190	140	190	110	150	
Force constant		K _{iFN}	N/A	176	146	184	147	232	182	
Voltage constant 4)		K _{EMF}	Vs/m	106	89	121	89	155	113	
Winding resistance at	20°C	R ₁₂	ohms	3.1	2	2.7	1.3	1.4	1.6	
Winding inductivity		L ₁₂	mH	15	9.3	14	6.7	12.2	8	
Minimum cross-sectio	n connection cable ⁵⁾	A _{PL}	mm²	2.5	4	4	6	4	6	
Rated power loss		P _{vN}	W	2,200 2,900 3,20			200			
Nominal air gap		δ	mm	1.2-04						
Pole width		Tp	mm		37.5					
Attractive force 6)		F _{ATT}	N	16,000 23		400	30,700			
Primary part mass sta	ndard encapsulation	m _{PS}	kg	33		48		62		
Primary part mass the	rmal encapsulation	m _{PT}	kg	40.8 58.3		74	.9			
Secundary part mass		m _s	kg/m	45.4						
Necessary coolant flow	ν Δϑ _N ¹⁰⁾	Q _{min}	l/min	3.16		4.	4.17		4.6	
Constant to Determine	Standard encapsula- tion	- k _{dp}		0.19		0.19		0.19		
the Pressure Loss 7)	Thermal encapsula- tion			0.	19	0.19		0.19		
Pressure loss at Q _N	Standard encapsula- tion	Δр	h	1.41	41	2.29		2.72		
	Thermal encapsula- tion		bar		44	2.34		2.78		
Permissible coolant inlet pressure		p _{max}	bar	10						
Coolant inlet temperature ⁸⁾		მ in	°C	+15 +40						
Temperature rise at P _{vN} ⁹⁾		Δϑ _N	К		10					
Thermal time constant		T _{th}	min	(6 6 6			6		
Permitted secondary part Temperature		T _{Smax}	°C	70						
Admissible ambient temperature during op- eration		T _{amb}	°C	0 +40						
Perm. storage and transport temperature		TL	°C	-20 +60						
Degree of protection				IP65						

Description	Symbol	Unit	MLP300				
nsulation class according to DIN VDE 0530-1							
1) The determined values are root-mean-square according to IEC 60034-1, if no others are specified. Reference value 540 V _{DC} .							
2) The maximum reachable force depends on the drive control device used.							
3) The reachable velocities depend on the supply voltage.							
4) EMF = electromagnetic force. Effective value referring to 1 m/s.							
5) Please note the information on the power wire cross section in "Necessary Power Wire Cross-Section" on page 20.							
6) Between primary and secondary part at nominal air gap, primary part currentless.							
7) Coolant water. To determine the pressure drop depending on the coolant flow see chapter 9.6 "Motor Cooling System" on page 116.							
8) The coolant inlet temperature should be max. 5°C lower than the existing ambient temperature (danger of condensation!).							
9) Operation with liquid cooling, coolant water, coolant inlet temperature 30°C.							
10) For further notes regarding flow rate, refer to chapter 9.6 "Motor Cooling System" on page 116.							
i. p. = in preparation.							
Fig.4-2	26: L	Data shee	t frame size MLP300				

Motor Characteristic Curves Frame Size 300

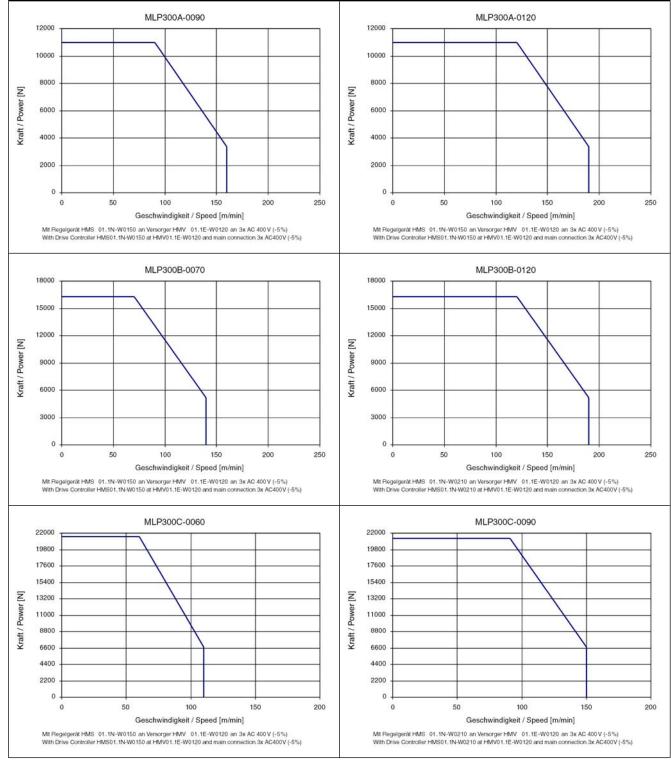
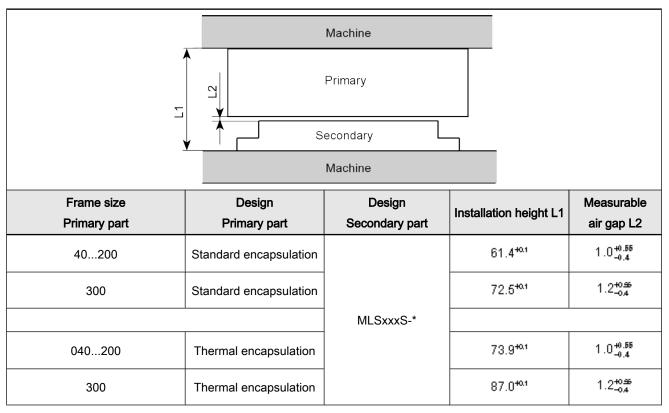


Fig.4-27:

Motor Characteristic Curves Frame Size 300


5 Dimensions, Installation Dimensions and -Tolerances

5.1 Installation Tolerances

In order to ensure a constant force along the entire travel length, a defined air gap height must be guaranteed. For this purpose, the individual parts of the motor (primary and secondary part) are tolerated accordingly. The distance of the mounting surface, the parallelism and the symmetry of the primary and secondary part of the linear motor in the machine must be within a certain tolerance above the entire travel length. Any deformations that result from weight, attractive forces and process forces must be taken into account. A deviation of the specified nominal air gap may lead

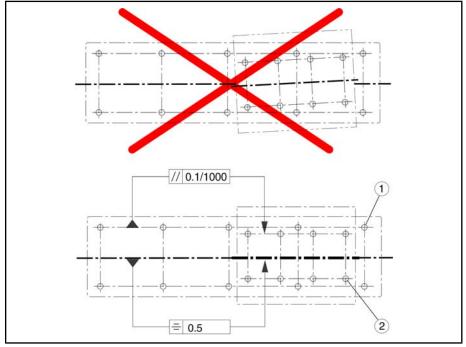
- to a reduction or modification of the specified performance data
- to a contact between the primary part and the secondary part and thus to damaged and destroyed motor components.

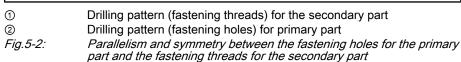
For the installation of the motors into the machine structure, Bosch Rexroth specifies a defined installation height with tolerances (see installation size L1 in fig. 5-1 "Mounting Sizes and Tolerances" on page 49). Thus, the specified size and tolerances of the air gap are maintained automatically – even if individual motor components are replaced.

Installation Height

Fig.5-1: Mounting Sizes and Tolerances

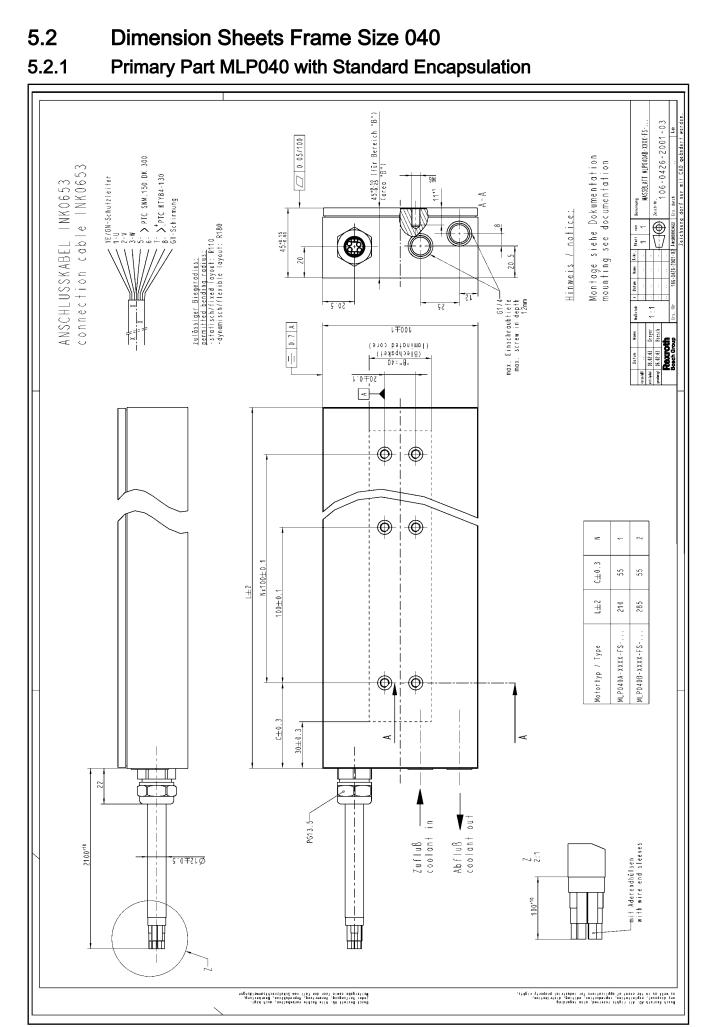
The specified installation height with the corresponding tolerances has to be observed absolutely.

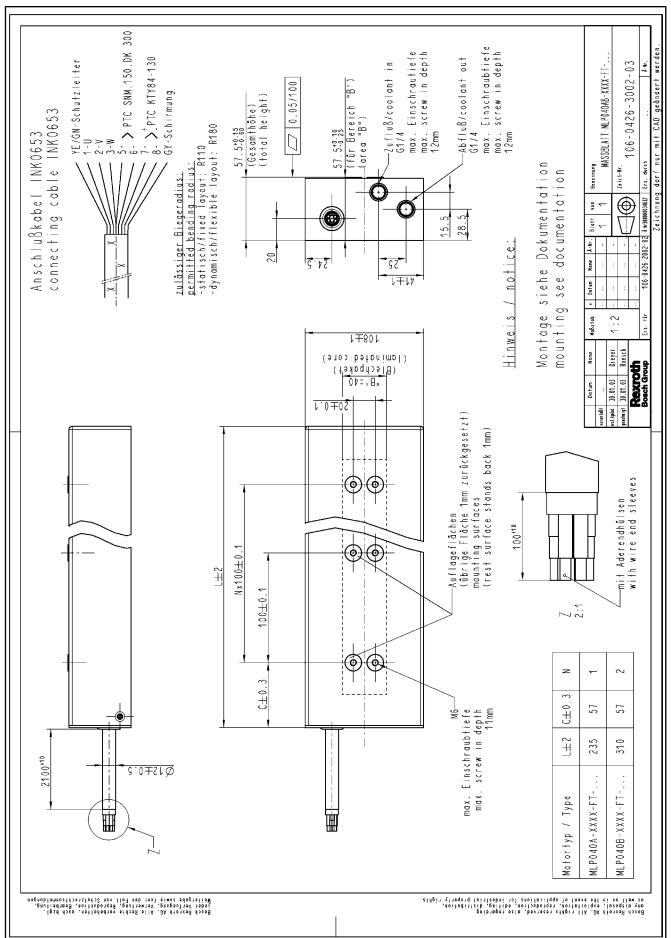

Parallelism and Symmetry of Machine Parts


Before primary and secondary part can be mounted, align the parts of the machine. Especially the machine slide is to be brought into a defined position to

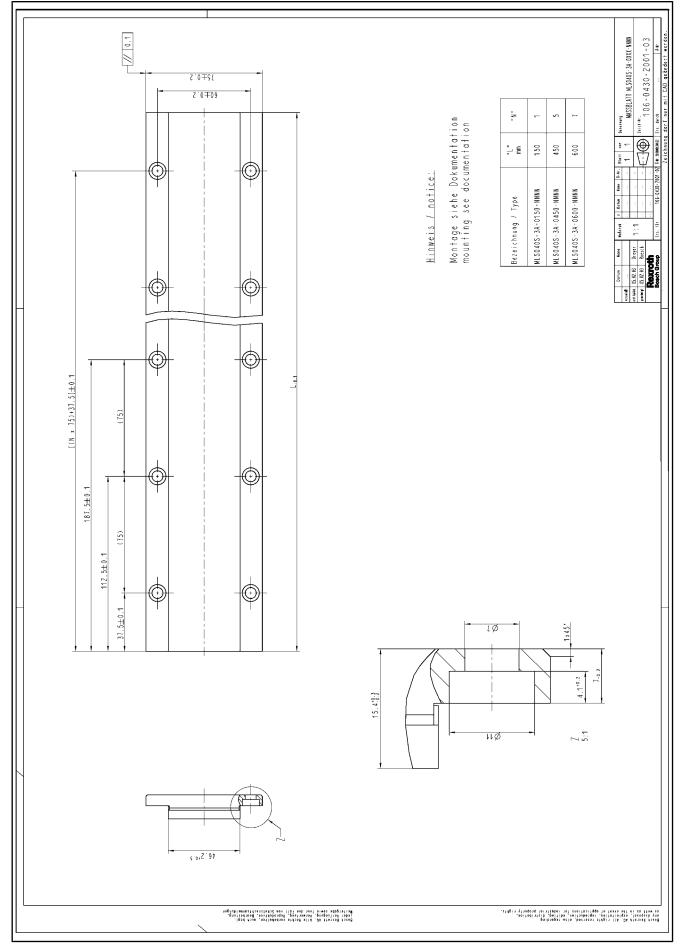
the machine bed. When aligning, the installation dimensions and tolerances regarding parallelism and symmetry according to fig. 5-2 "Parallelism and symmetry between the fastening holes for the primary part and the fastening threads for the secondary part" on page 50 must be kept.

To keep the tolerances, it is necessary that the fastening holes for the primary part and the threaded holes for the secondary part in the machine are strictly done according to the dimensions of the particular dimension sheets.


If this is done correctly, the center lines of the fastening of threaded holes can serve as referance for aligning the parts.


When moving primary and secondary parts, the stated tolerances regarding parallelism and symmetry must be kept during the total moving process.

You will find further notes regarding assembly of primary and secondary parts in the chapter 13 "Assembly".


52/259 Bosch Rexroth AG | Electric Drives and Controls

Dimensions, Installation Dimensions and -Tolerances

5.2.2 Primary Part MLP040 with Thermo Encapsulation

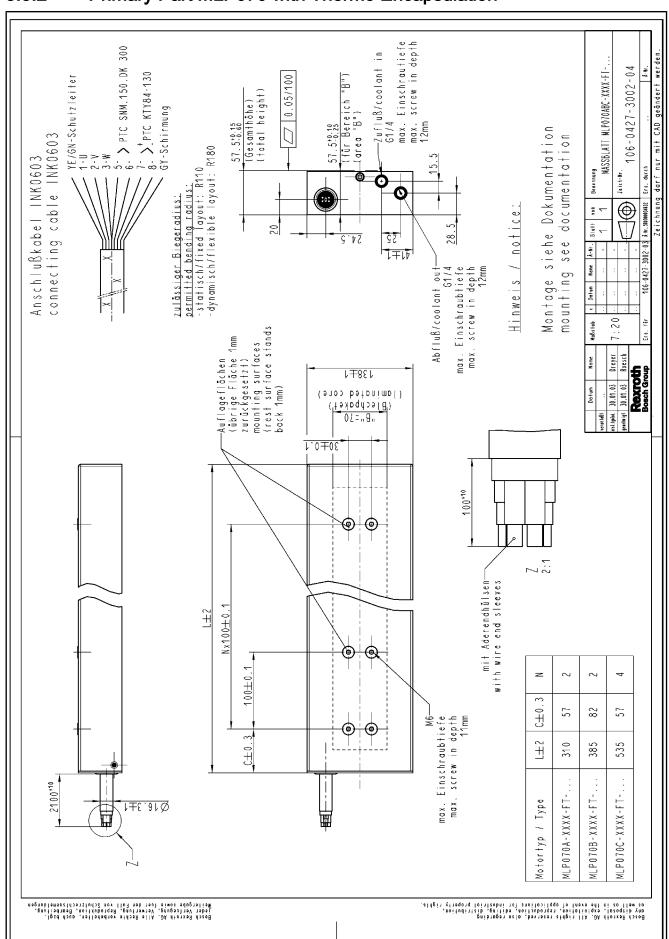
Fig.5-4: Primary Part MLP040 with Thermo Encapsulation

Secondary Part MLS040 5.2.3

Secondary Part MLS040 Fig.5-5:

Dimensions, Installation Dimensions and -Tolerances

Bosch Rexroth AG | Electric Drives and Controls

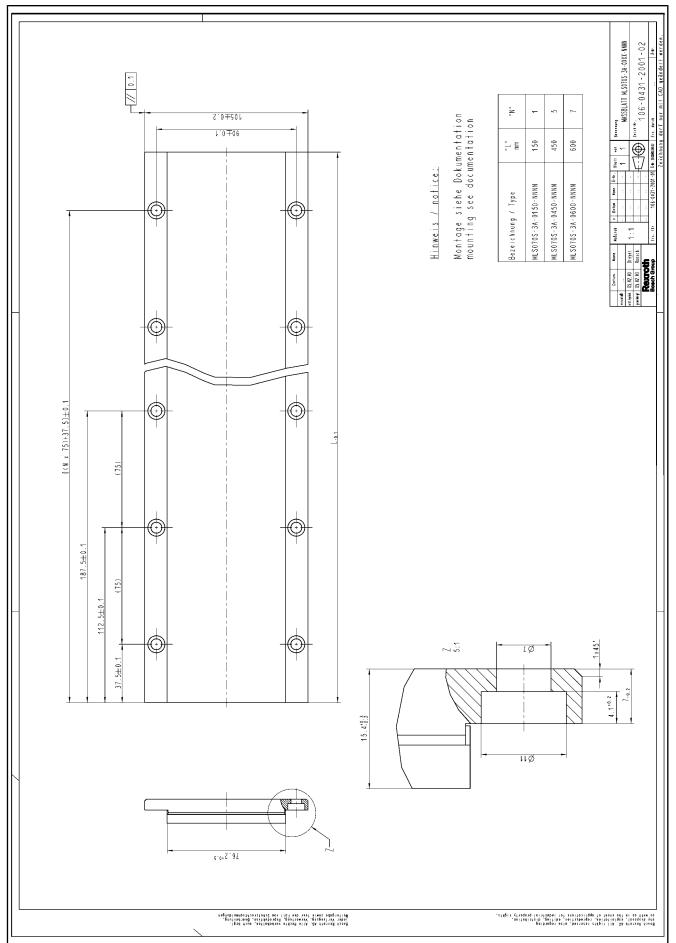

54/259

Boisch Berrah AG. All rights reserved, also regarding any location (reproduction, rediting, distribution, as well as in the event of opplications for industrial property rights.

Dimensions, Installation Dimensions and -Tolerances

5.3 **Dimension Sheets Frame Size 070** 5.3.1 Primary Part MLP070 with Standard Encapsulation 2014-2014-02 106-0427-2001-02 MASSBLATT MLPO7DABC-XXX-FS > PTC SNM.150.DK 300 connecting cable INK0603 0.05/100 Montage siehe Dokumentation mounting see documentation >_PIC KIY84-130 ANSCHLUSSKABEL INK0603 YE/GN-Schutzleiter 1-11 8- 2-110 N. ... D R180 <u>Hinweis / nofice:</u> \bigcirc 45.0.15 R110 ş 🗸 zulässiger Biegeradius: permitted bending radius: -statisch/fixed Tayout: R1 -dynamisch/flexible Tayout 81e#1 Kçme Å-Kr., 20 Y-Y Datum = 0.7 A max. Einschraubtiefe max. screw in depth 12mm 61/4 1:2 Habsteb 130±1 None Dreyer (storiation) (Blechpaket) (storiation) Datum Rexto 1.0±0£ rerastali arti.fysist. genelmigi 4 z \sim \sim C±0.3 55 55 80 1±2 510 285 360 $\widetilde{\pm}$ MLP070A - XXXX - FS -MLP070B-XXXX-FS-MLP070C-XXXX-FS-Motortyp / Type N×100±0.1 Ф Ó 100±0.1 C±0.3 22 30土0.3 2100*10 001 1±8.31Q Zufluß coolant in mit Aderendhûlsen with wire end sleeves Abfluß coolant PG21 2:1 Ë 100+10

Basch Besteh KG, Alle Rechte verbehalten, auch bigl. jeder Verlisegung, Verwertieng, Reproduktion, Bearbeitung, nsghubitammectidsststuktök acvilion för test sänkes sädensst



5.3.2 Primary Part MLP070 with Thermo Encapsulation

Fig.5-7: Primary Part MLP070 with Thermo Encapsulation

56/259 Bosch Rexroth AG | Electric Drives and Controls

Dimensions, Installation Dimensions and -Tolerances

5.3.3 Secondary Part MLS070

Fig.5-8: Secondary Part MLS070

teitere. 106-0432-2001-03 MASSBLATT MLP100ABC-XXXX-FS-

 \bigcirc š 🗠

1

Keme Å-Kr.

Datum

1:2 toba teb

> I cyer Rexroth

06.42.03

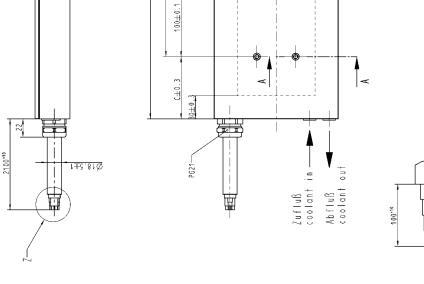
reconta**l**it erst.*l*yciat. genetningt

4 ŝ

55 80

510

MLP100B-XXXX-FS-MLP100C - X X X - F S -

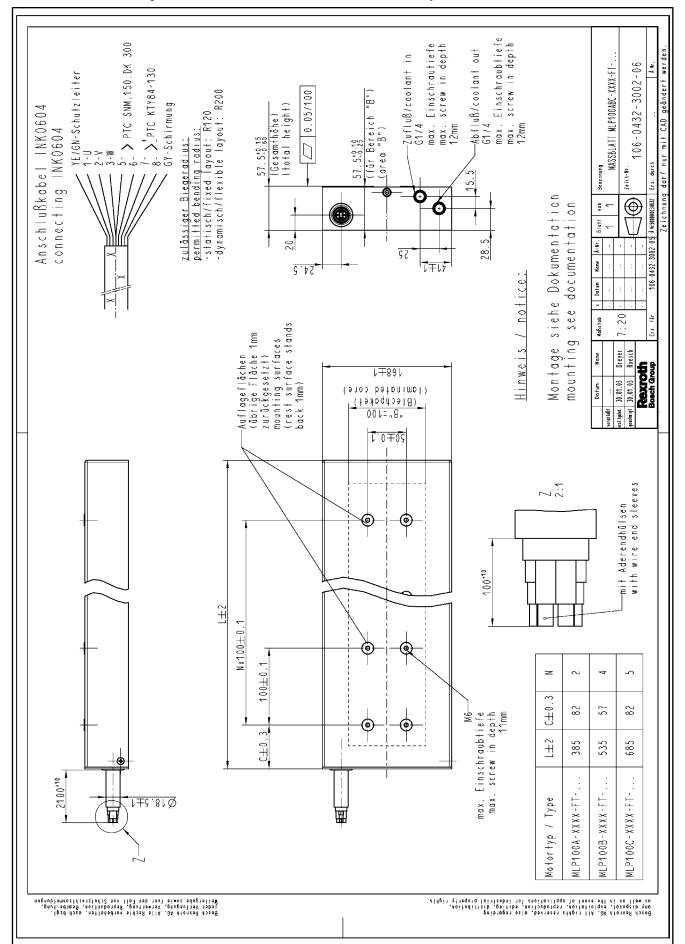

mit Aderendhülsen with wire end sleeves

2:1

660

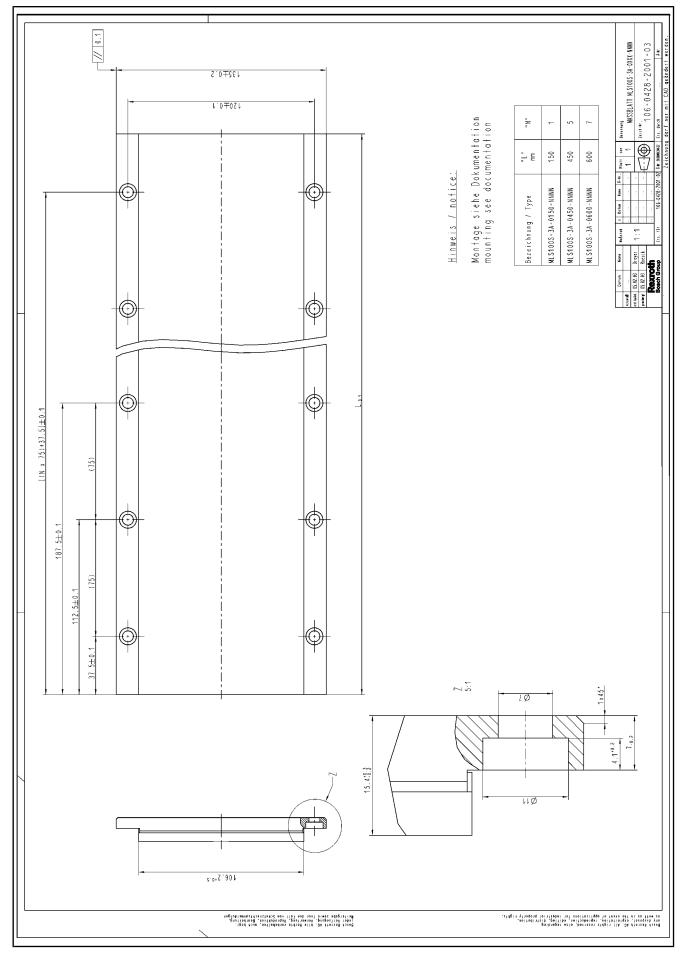
Dimensions, Installation Dimensions and -Tolerances

5.4 **Dimension Sheets Frame Size 100** Primary Part MLP100 with Standard Encapsulation Montage siehe Dokumentation mounting see documentation > PTC SNM.150.DK 300 7-8- 2+PTC KTY84-130 8-Schirmung connecting cable INK060. YE/GN-Schutzleiter 1-U 0.05/100 ANSCHLUSSKABEL INK0604 Bereich <u>Hinweis / notice:</u> <u>zulāssiger Biegeradius:</u> permitted bending radius: -statisch/fixed Toyout: R120 -dynamisch/flexible Tayout: R200 45:0:<u>3</u>9 (fûr Be (area ⁻ 4 - A 9 W 11 44 45*0.15 G1/4 Einschraubtiefe . screw in depth 12mm Ξ 0.7 A 17091 "B"=100 (Blechpaket) (Iaminated core) max. max. 1.0±0č < z \sim C±0.3 80 [±2 360 ¢ Nx100±0.1 L±2 MLP100A-XXXX-FS-Motortyp / Type ◙


Basch Resneth AG. Alle Rechts vorbehalten, auch bzgl. jeder Verisegung. Verwerteng, Reproduktion, Bearbeilungen Weitergabe sewie feer den Fall von Schulzrechtsgemeidungen

5.4.1

baitab AG, All rights reserved, alse regarding i Al Artibute any dappad, anyloitabias, repredation, adhing, distribution, arell os in she erent of opplications for industriol property rights.

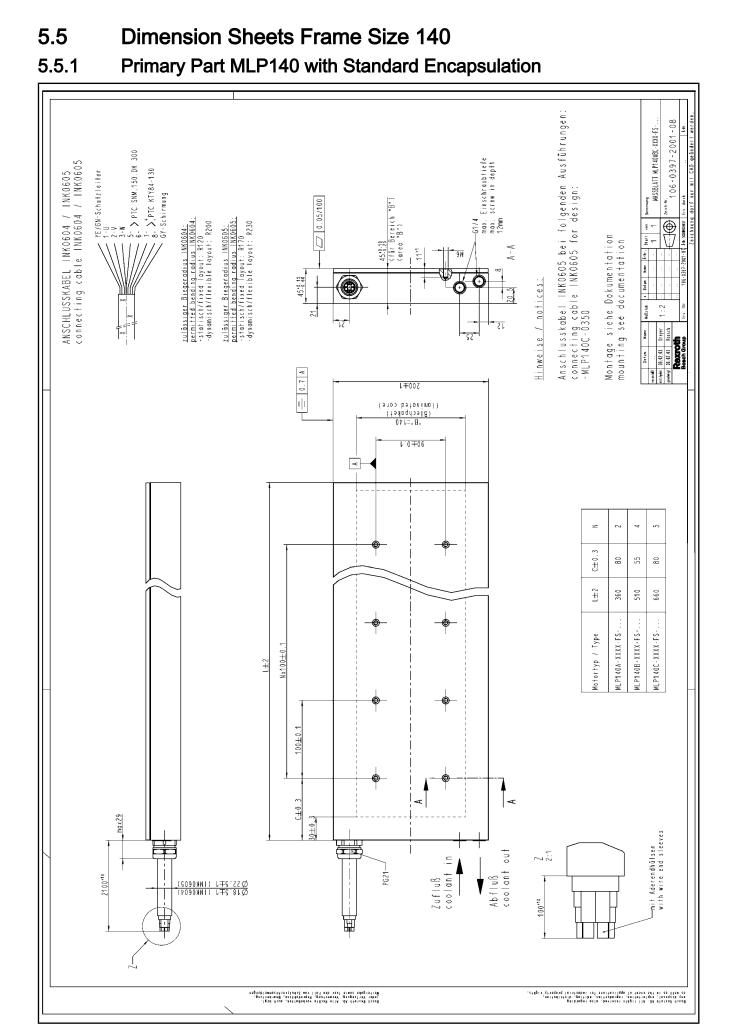

58/259 Bosch Rexroth AG | Electric Drives and Controls

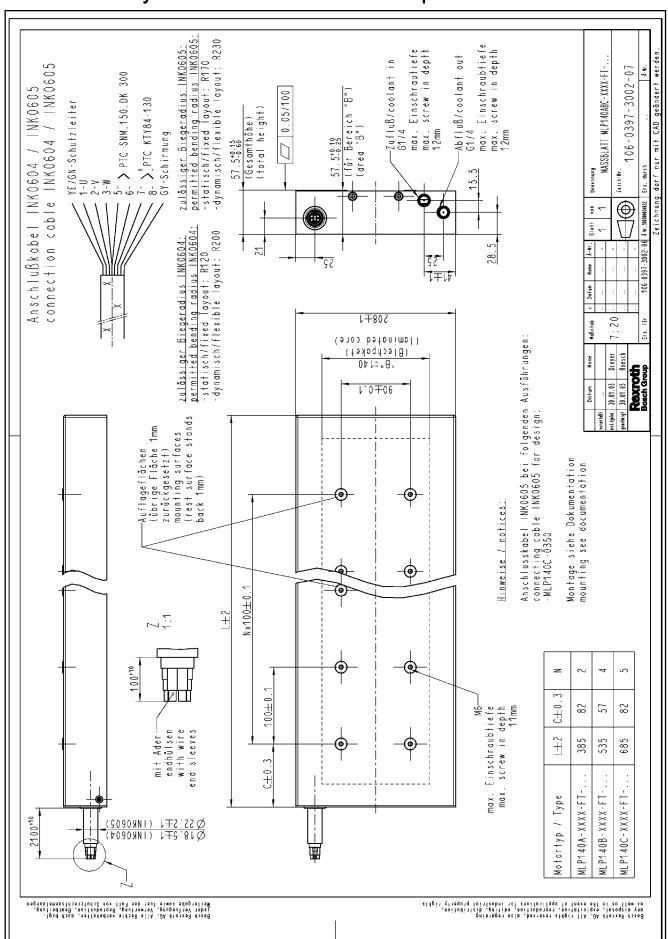
Dimensions, Installation Dimensions and -Tolerances

5.4.2 Primary Part MLP100 with Thermo Encapsulation

Fig.5-10: Primary Part MLP100 with Thermo Encapsulation

5.4.3 Secondary Part MLS100


Fig.5-11: Secondary Part MLS100

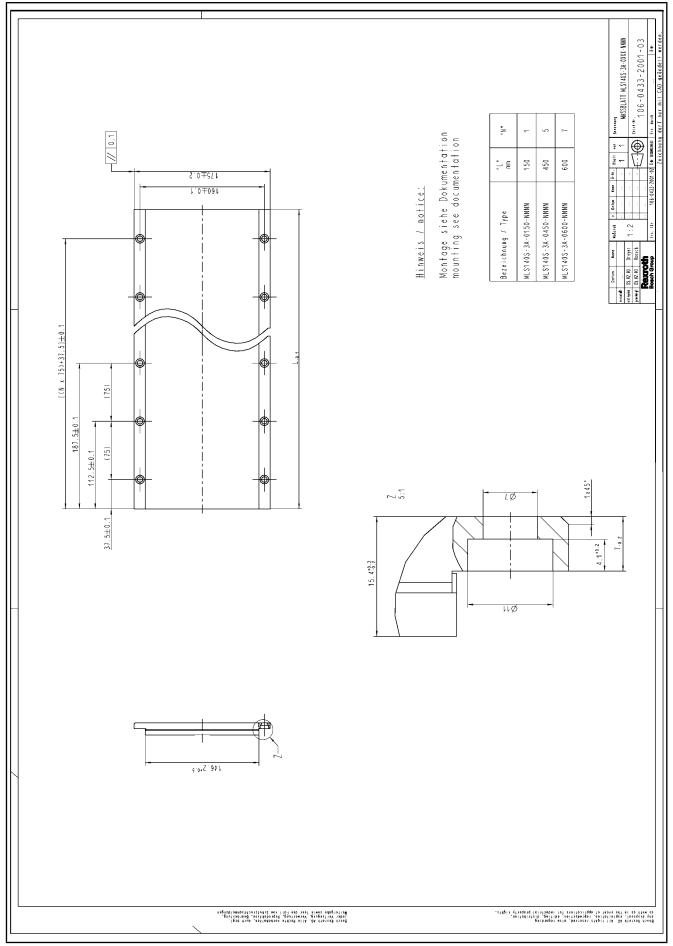

Dimensions, Installation Dimensions and -Tolerances

Bosch Rexroth AG | Electric Drives and Controls

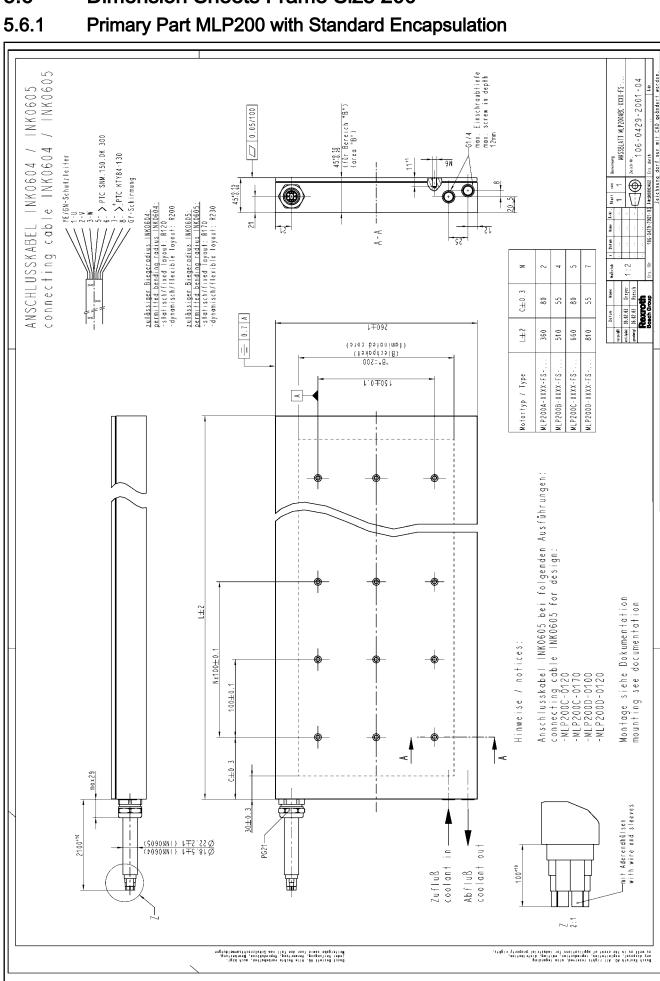
60/259

Dimensions, Installation Dimensions and -Tolerances

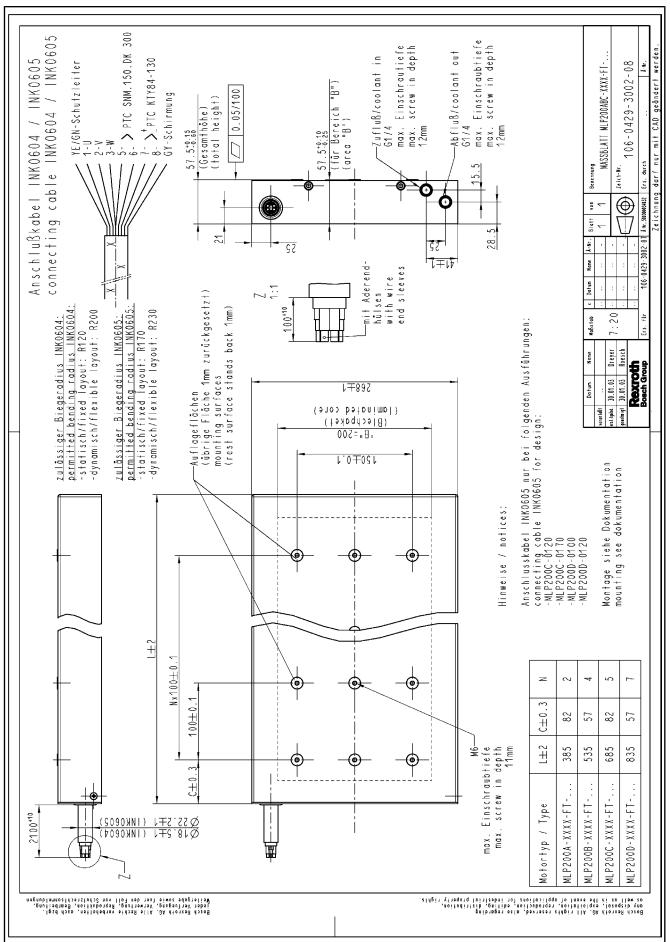
5.5.2 Primary Part MLP140 with Thermo Encapsulation


Fig.5-13: Primary Part MLP140 with Thermo Encapsulation

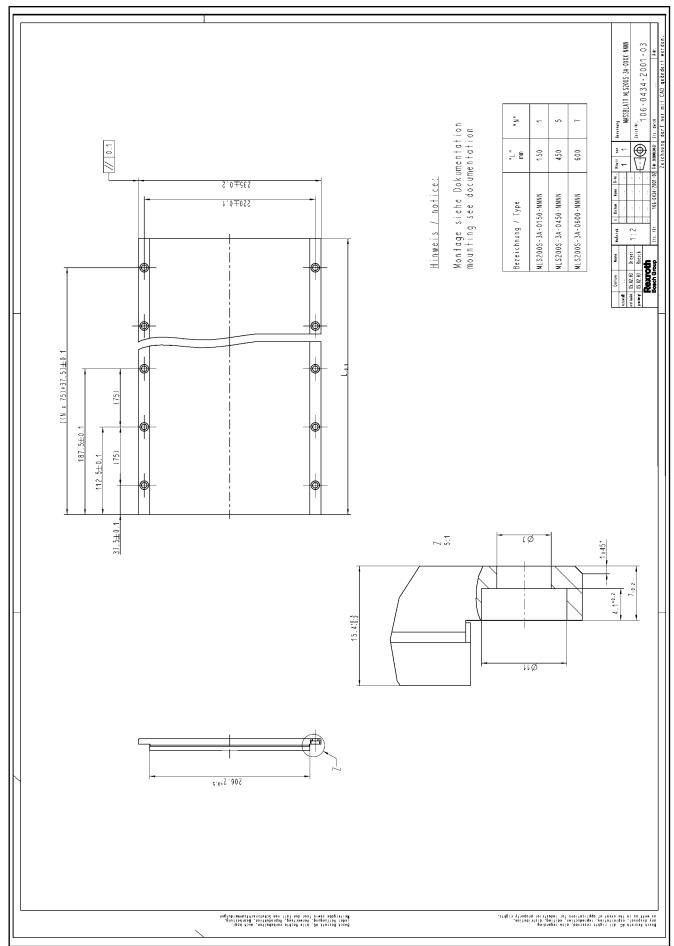
Bosch Rexroth AG | Electric Drives and Controls


62/259

Dimensions, Installation Dimensions and -Tolerances



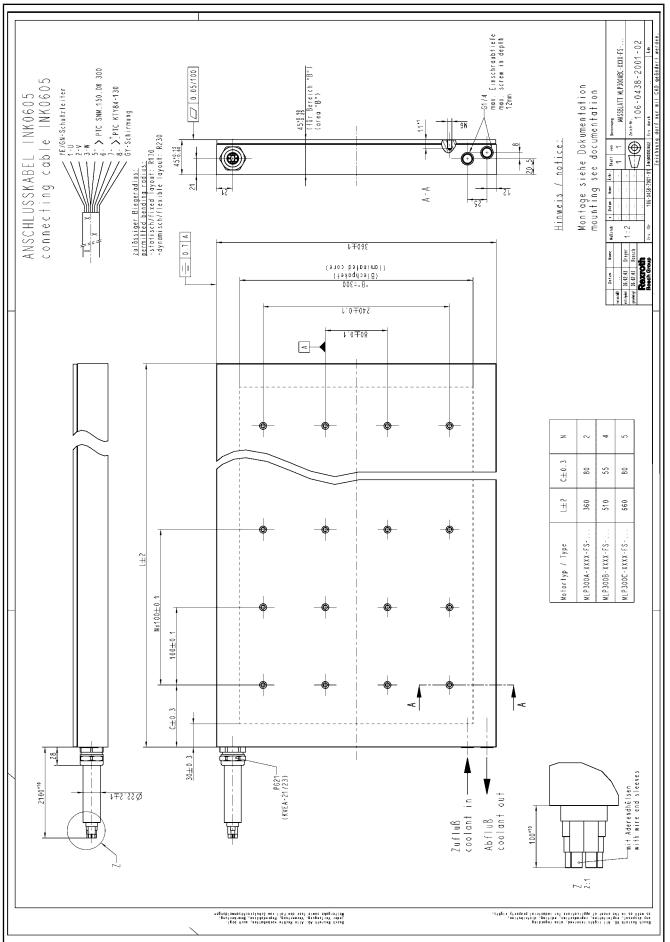
5.6 **Dimension Sheets Frame Size 200**


64/259 Bosch Rexroth AG | Electric Drives and Controls

Dimensions, Installation Dimensions and -Tolerances

5.6.2 Primary Part MLP200 with Thermo Encapsulation

Fig.5-16: Primary Part MLP200 with Thermo Encapsulation




5.6.3 Secondary Part MLS200

Fig.5-17: Secondary Part MLS200

Dimensions, Installation Dimensions and -Tolerances

5.7 Dimension Sheets Frame Size 3005.7.1 Primary Part MLP300 with Standard Encapsulation

5.7.2 Primary Part MLP300 with Thermo Encapsulation

Fig.5-19: Primary Part MLP300 with Thermo Encapsulation

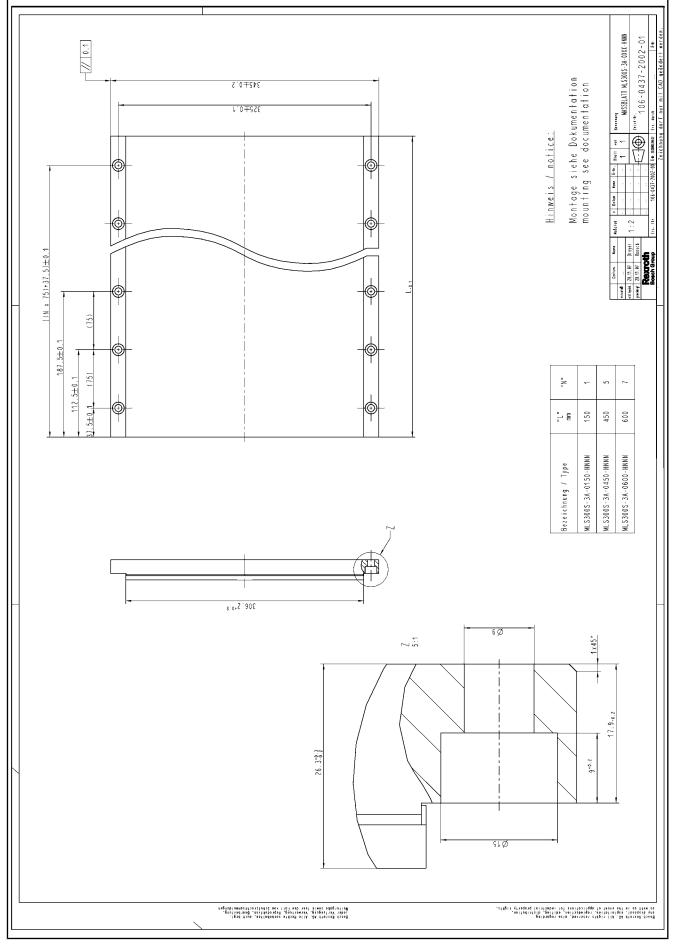


Fig.5-20: Secondary Part MLS300

6.1 Description

6.1.1 General Information

The type code describes the deliverable motor variants. It is the basis for selecting and ordering products from Bosch Rexroth. This applies to new products as well as to spare parts and repairs.

The overall product designation "IndraDyn L" stands for synchronous linear motors. This designation describes the total system which consists of a primary and a secondary part. As linear motors are kit motors, the primary and secondary part obtain an additional, defined short term.

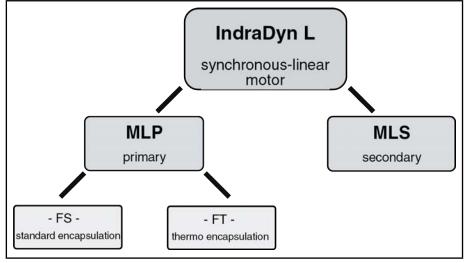


Fig.6-1: Short term for IndraDyn L

The following figures give an example of a motor type code for primary and secondary parts, by which an exact specification of the single parts (e.g. for orders) is possible.

The following description gives an overview over the separate columns of the type code ("abbrev. column") and its meaning.

When selecting a product, always consider the detailed specifications in the chapter 4 "Technical Data" and chapter 9 "Notes regarding Application".

6.1.2 Type Code Primary Part MLP

General Information

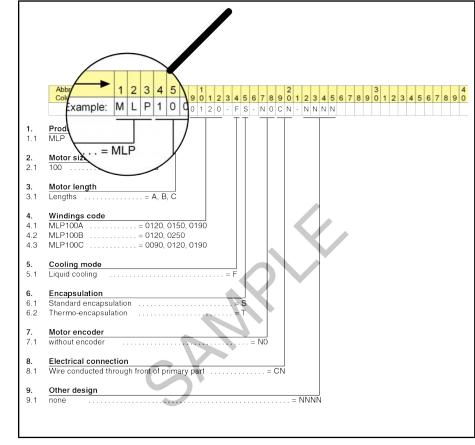


Fig.6-2: Example for a type code primary part MLP100

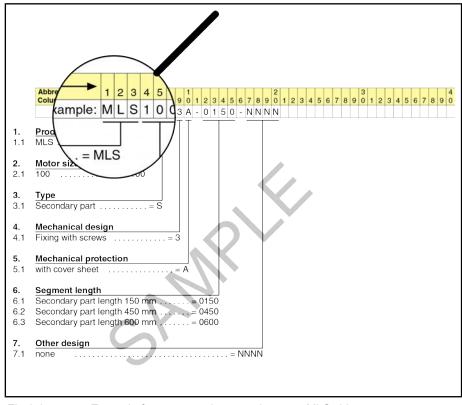
MLP is the designation of the primary part of an IndraDyn L motor.
The motor frame size is derived from the active magnet width of the secondary part and representatives different power ranges.
Within a series, the graduation of the increasing motor frame length is indicated by ID letters in alphabetic order.
Frame lengths are e.g. A, B or C.
The numbers of the winding code do also describe the reachable maximum speed $\mathrm{F}_{\mathrm{max}}$ in m/min.
In general, the primary parts of the IndraDyn L motors are provided with liquid cooling for operation and thus only available with liquid cooling.

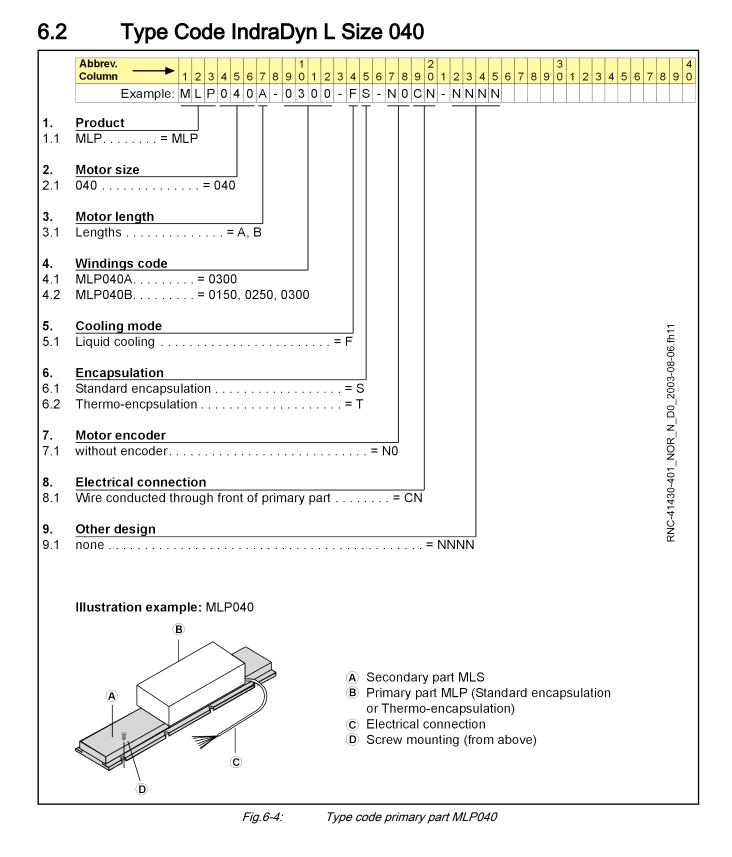
Casing		
	Abbrev. Column 15	• S= standard encapsulation stainless steel encapsulation with a liquid cooling integrated into the back of the motor to dissipate the lost heat.
		• T = thermal encapsulation: stainless steel encapsulation with an additional liquid cooling on the back of the motor and heat conductive plates for optimum thermal decoupling to the machine construction.
Motor En	coder	
	Abbrev. Column 1718	The necessary length measuring system is not in the scope of delivery of Bosch Rexroth and has to be provided and mounted from the machine manufacturer himself.
Electrical	l Connection	
	Abbrev. Column 1920	Primary parts of synchronous linear motors IndraDyn L are fitted with a high- flexible and shielded cable. The connection cable is brought out of the front of the primary part and is fixed with it.
Other de	sians	

Abbrev. column 22 23 24 25 Those fields are not reserved.

6.1.3 Type Code Secondary Part MLS

General Information




Fig.6-3:

Example for a type code secondary part MLS100

Component MLS

Abbrev. Column 123 MLS is the designation of the secondary part of an IndraDyn L motor.

Motor frame size	
Abbrev. Column 456	The motor frame size is derived from the active magnet width of the secondary part and representatives different power ranges.
Туре	
Abbrev. Column 7	S = secondary part
Mechanical Design	
Abbrev. Column 9	The number 3 stands for the fastening of the secondary part with screws by fixing holes along the outer edge.
Mechanical protection	
Abbrev. Column 10	To ensure the utmost operation reliability, the permanent magnets of the sec- ondary part are always protected against corrosion, action of outer influences (e.g. coolants and oil) and against mechanical damage, due to an integrated rustless cover plate.
Segment length	
Abbrev. Column 12 13 14 15	 Secondary parts or - segments are available in the following lengths: 150mm 450mm 600mm
Other designs	
Abbrev. Column 17 18 19 20	NNNN = Those fields are not reserved.
	HNNN = reinforced basic carrier (only for MLS300)

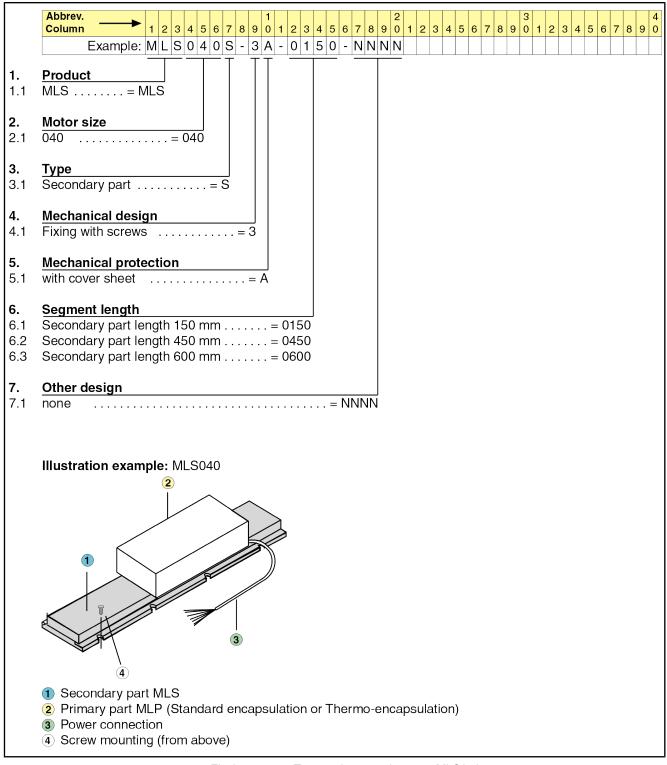


Fig.6-5: Type code secondary part MLS040

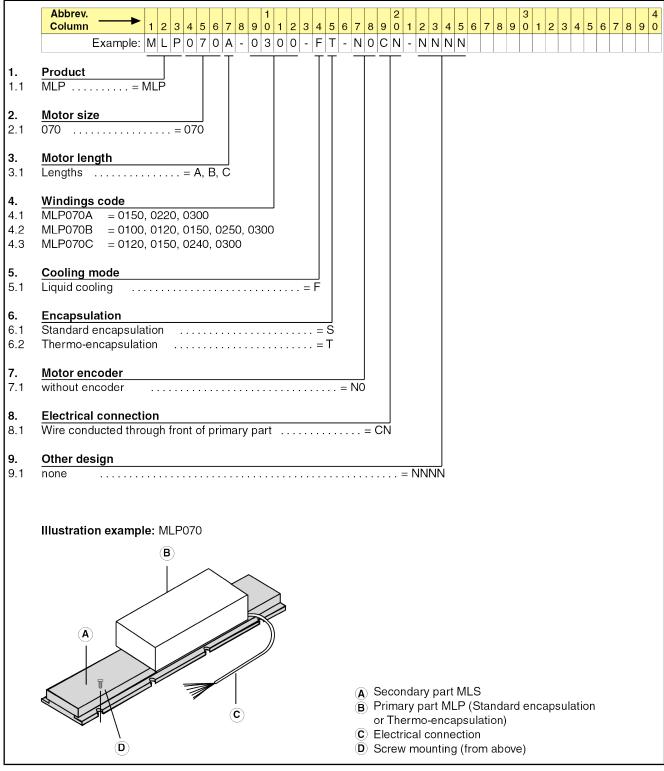
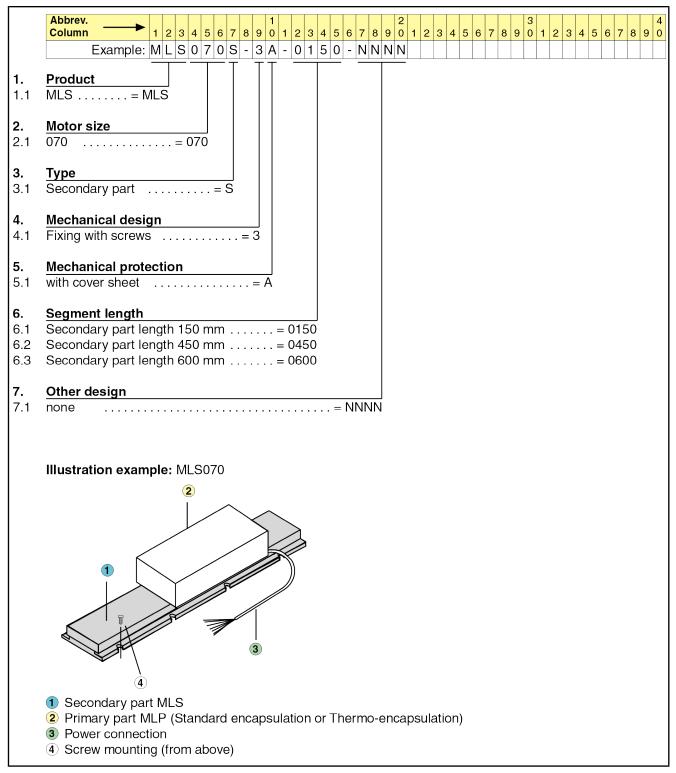
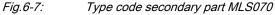




Fig.6-6: Type code primary part MLP070

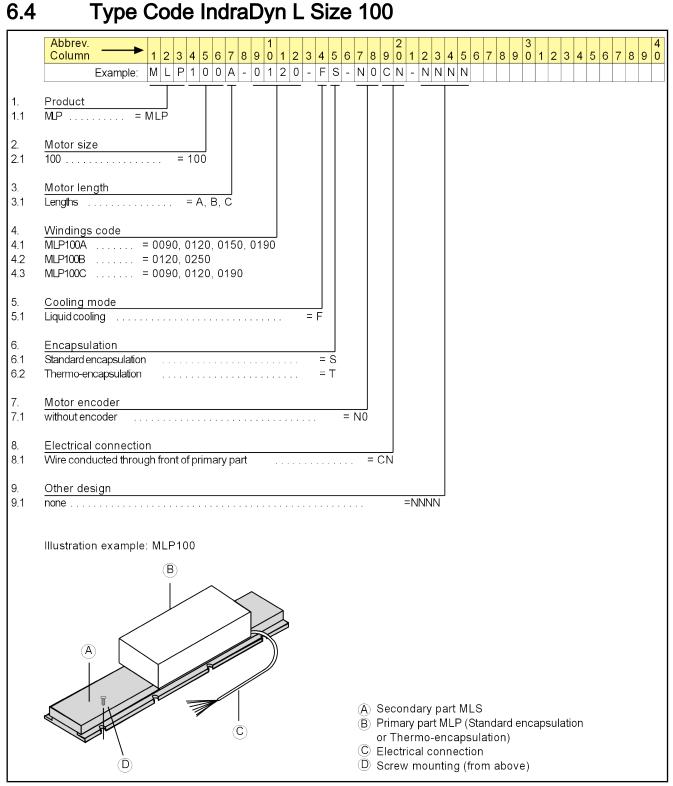
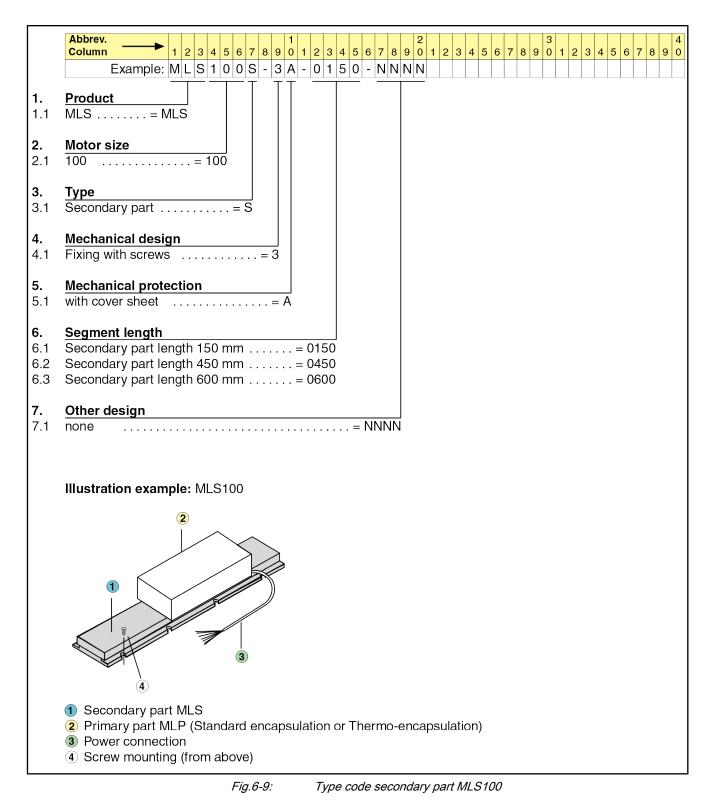
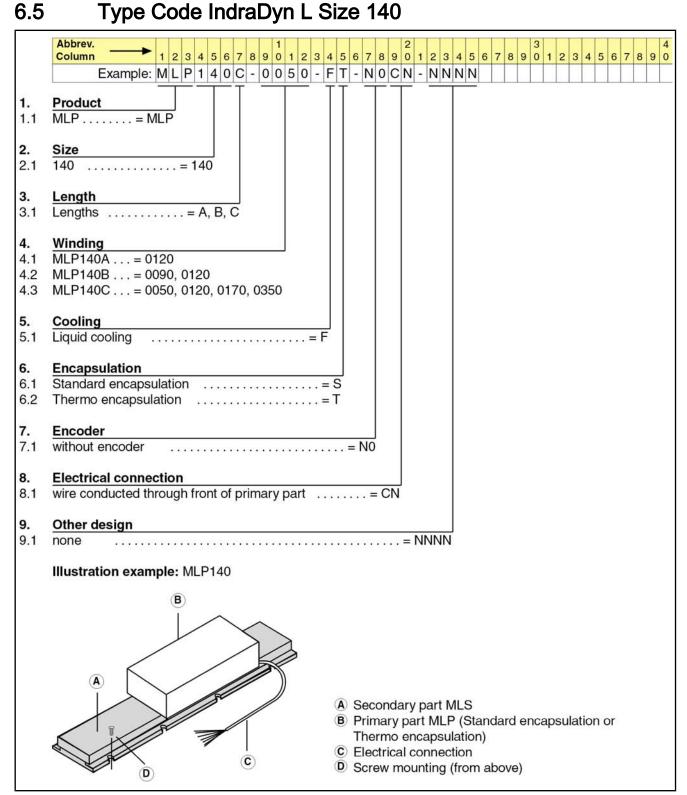




Fig.6-8:

Type code primary part MLP100

Fig.6-10: Type code primary part MLP140

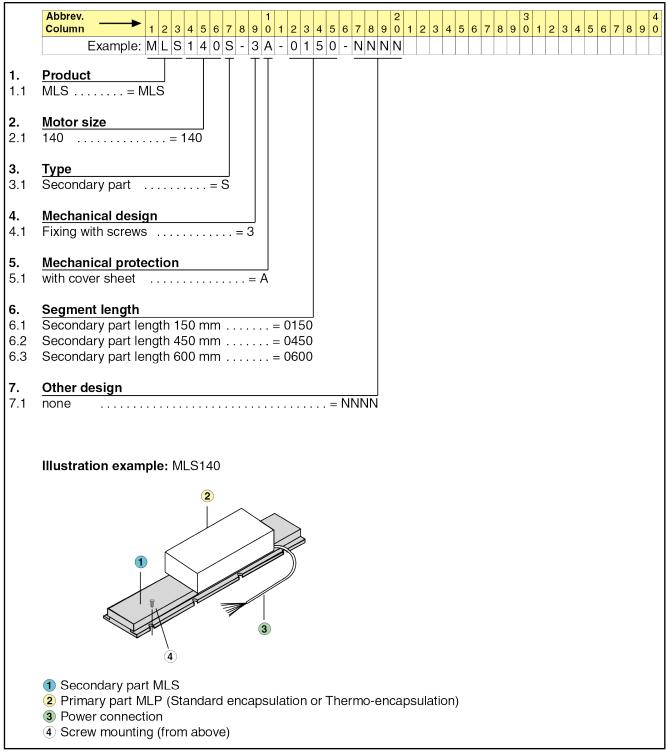
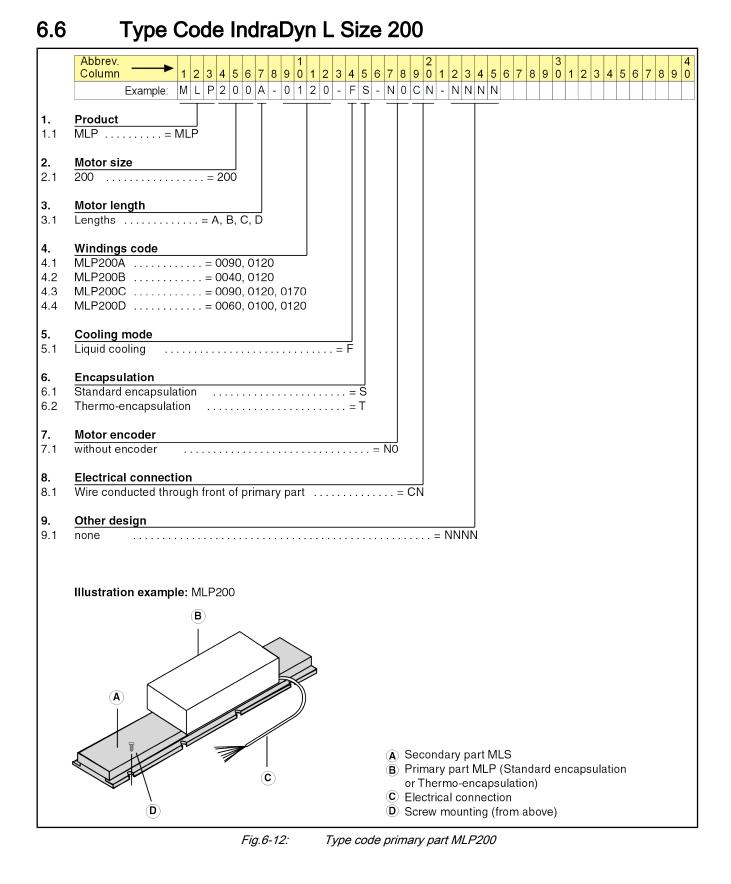
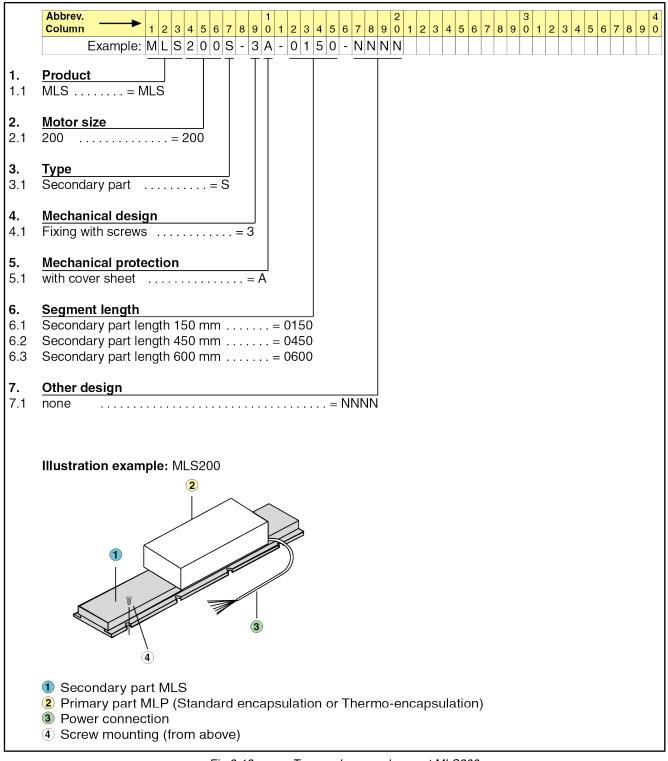
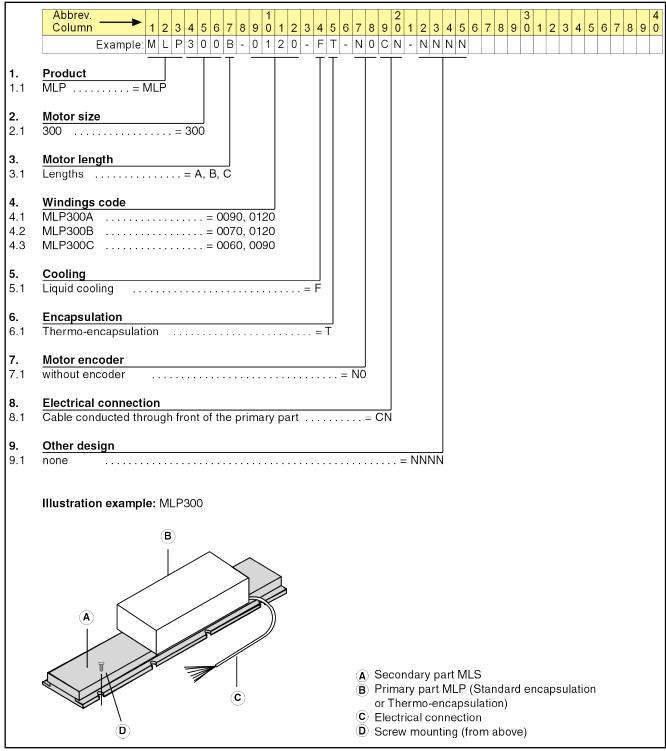
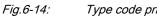
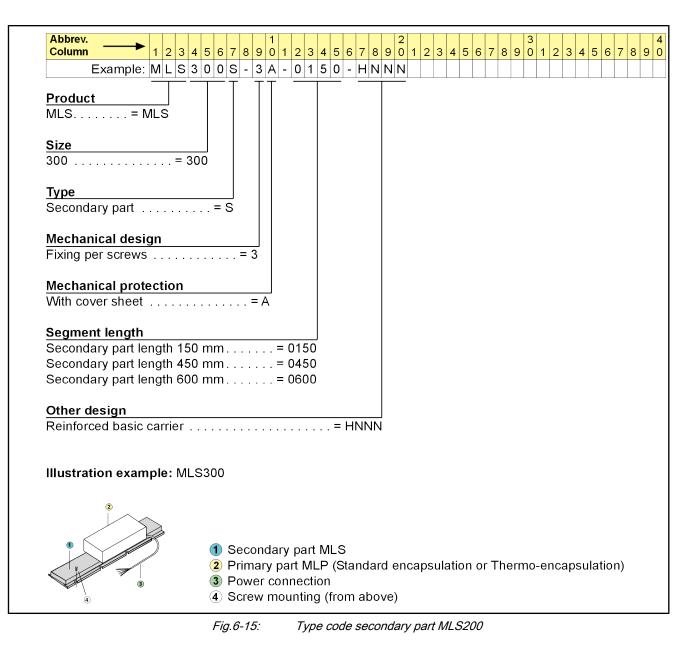



Fig.6-11: Type code secondary part MLS140


Fig.6-13: Type code secondary part MLS200

Type code primary part MLP300

Accessories and Options

7 Accessories and Options

7.1 Hall Sensor Box

7.1.1 General Information

The Hall sensor box SHL is an optional component for drive controllers with incremental measuring systems and IndraDyn L motors of Bosch Rexroth.

When using an incremental length measuring system a commutation of the axes has to result from every step up of the phases of the drive device. This results from an drive-internal procedure. After this, a force processing of the motor is possible.

The commutation is determined automatically during the phase step up by the Hall sensor box. Therefore, no power switch-on is necessary.

Possible applications are, for example

- Commutation of motor on vertically axes,
- Commutation of motors which should not move for safety reasons during the commutation process .
- Gantry-arrangement of the motors.

Delivery of the Hall sensor boxes as accessory can be made alternatively

- ex works, as accessory of an IndraDyn L motor,
- as single part for retrofitting of existing machines with IndraDyn or Ecodrive drive controllers and IndraDyn L motors.

With the appropriate firmware are also control units of the type Diax compatible with the hall sensor boxes of type SHL.

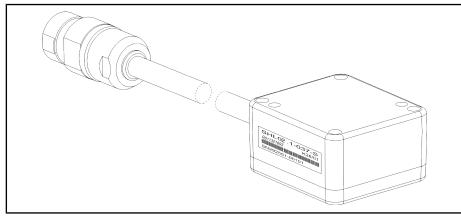
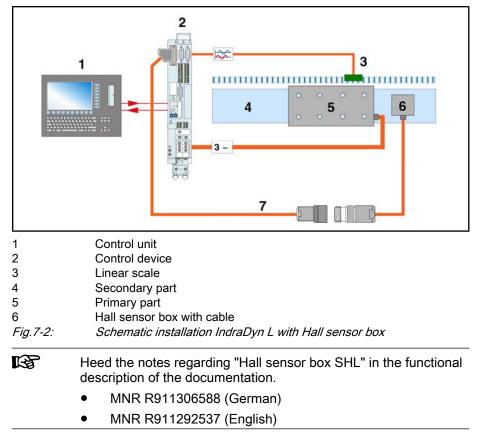



Fig.7-1:

Accessory Hall sensor box SHL

Accessories and Options

7.1.2 Schematic Assembly

8 Electrical Connection

8.1 Power Connection

8.1.1 Power Cable on the Primary Part

Primary parts of IndraDyn L motors are fitted with a flexible and shielded power cable. This power cable is connected with the primary part and is 2m long.

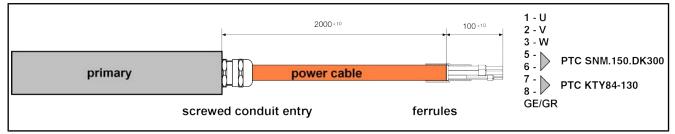
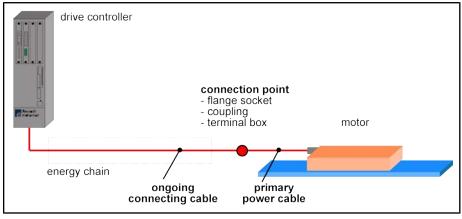


Fig.8-1: Design of power cable on the primary part MLP

The following overview gives the technical data of the power cables for every single motor size.

Motor frame size	Power cable on the primary part	Cross-section Power wires	Cross-section Control wire	Cross-section	Bending radius statically
MLP040x-xxxx	INK653	1.0 mm ²	0.75 mm²	12 mm	72 mm
MLP070x-xxxx	INK603	4.0 mm ²		16.3 mm	100 mm
MLP100x-xxxx					
MLP140A-xxxx					
MLP140B-xxxx					
MLP140C-0050		6.0 mm²			
MLP140C-0120	INK604			18.5 mm	110 mm
MLP140C-0170	1111004		6.0 mm-		10.5 11111
MLP200A-xxxx			1,0		
MLP200B-xxxx			or		
MLP200C-0090			1.5 mm²		
MLP200D-0060					
MLP140C-0350					
MLP200C-0120					
MLP200C-0170	INK605	10.0 mm²		22.2 mm	130 mm
MLP200D-0100		10.0 mm-		22.2 mm	130 mm
MLP200D-0120					
MLP300x-xxxx					

Fig.8-2: Power cable on the primary part MLP

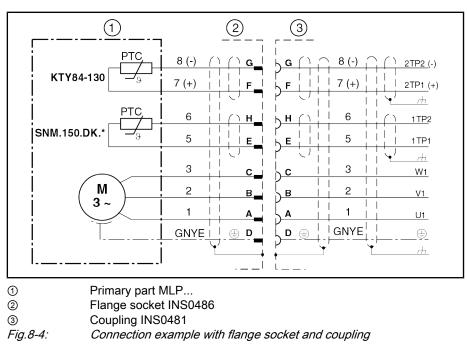

Passing the power cable

The power cable, which is connected to the primary part, ends with open wire end, provided with wire end ferrules (see fig. 8-1 "Design of power cable on the primary part MLP" on page 87) and might never be abandoned to dynamic bending forces. A passing of the primary part cable should thus never be made in a moving drag chain.

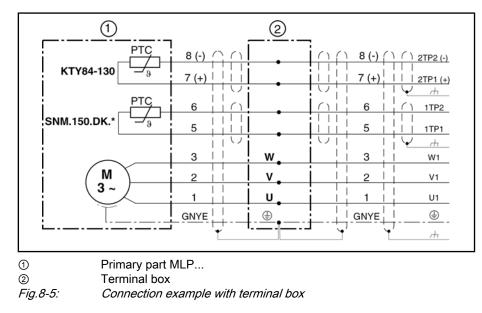
We recommend to assembly the cable in fixed passing to

- a flange socket
- a coupling or
- a terminal box (not in the scope of delivery of Rexroth).

From this junction, the power supply with the connection cable can be laid through a drag chain, resp. the machine construction. Ready-made connection cables are available from Rexroth.


Fig.8-3: Passing the connection cable of the primary part

WARNING	 Damage of the connection cable and thus of the motor by dynamic bending forces! ⇒ No passing of the primary part-cable in a drag chain. ⇒ Passing the connection cable after the junction into a drag chain.
	The power cables of the primary part are designed for the highest voltage of a motor size. The cross-section of a power cable can, in any circumstances, be smaller.


8.1.2 Connection power supply

General Information

Connection via Flange Socket and Coupling

Connection via Terminal Box

Passing types and cable cross-sections

Parallel Motor Connection

When connecting a motor parallel on a drive controller, the following possibilities exist to assembly the connection cable.

- Passing a collective cable with a higher cross-section (fig. 8-8 "Parallel arrangement, collective connection cable " on page 90)
- Passing of two separate parallel cables (fig. 8-7 "Parallel arrangement, separate connection cable" on page 90)

The latter possibility gives maybe the advance of lower bending radius. The entire cross-section of the parallel passed cables must correspond to the higher cross-section for parallel motor connection.

Power connection at separate arrangement

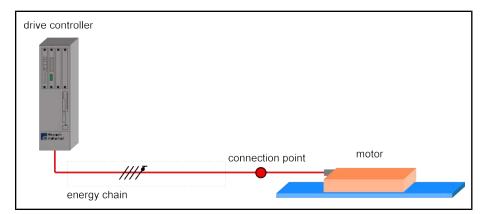
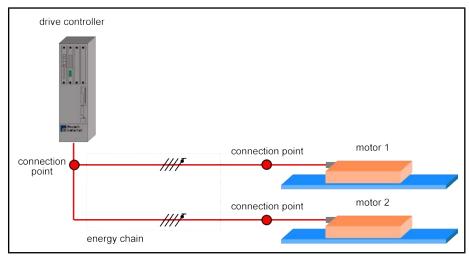



Fig.8-6: Power connection at separate arrangement

Power connection at parallel arrangement, separate connection cable

Power connection at parallel arrangement, collective connection cable with higher cross-section

Parallel arrangement, separate connection cable

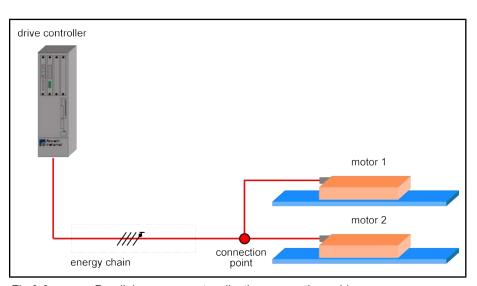


 Fig.8-8:
 Parallel arrangement, collective connection cable

Connecting Cables

The selection of the exact cable cross-section depend on the passing type and is to be made according to the table below.

th	n IndraDyn L Electric Drives Bosch Rexroth AG 91/259 and Controls				
	Electrical Connection				
	Motor Phase Current in A (Effective value)	Connection Cable at Single or Parallel Arrangement with separate Power Cables	Connection Cable at Parallel Arrangement with collective Power Cable		
	4,2				
	4,2				
	5,3		1.0 mm² (INK653)		
	6				
	5,5				
	6,3				
	10,5		2.5 mm² (INK602)		
	5,5	1.0 mm² (INK653)			
	5,8		1.0 mm² (INK653)		
	6,2				
	10		2.5 mm² (INK602)		
	12		4 mm² (INK603)		
	8,9		2.5 mm² (INK602)		

Primary Part MLP...

040A-0300 040B-0150

200B-0040

040B-0250	5,3		1.0 mm^2 (INI/(652))
040B-0350	6		1.0 mm² (INK653)
070A-0150	5,5		
070A-0220	6,3		
070A-0300	10,5		2.5 mm² (INK602)
070B-0100	5,5	1.0 mm² (INK653)	
070B-0120	5,8		1.0 mm² (INK653)
070B-0150	6,2		
070B-0250	10	-	2.5 mm² (INK602)
070B-0300	12		4 mm² (INK603)
070C-0120	8,9		0.5 3 (1) 1(000)
070C-0150	11,7	-	2.5 mm² (INK602)
070C-0240	13		4 mm² (INK603)
070C-0300	19	2.5 mm² (INK602)	6 mm² (INK604)
100A-0090	6,6		1.5 mm² (INK650)
100A-0120	8		0.5 mm ² (INI/(000)
100A-0150	10	1.0 mm² (INK653)	2.5 mm² (INK602)
100A-0190	12	_	4
100B-0120	12		4 mm² (INK603)
100B-0250	22	2.5 mm² (INK602)	10 mm² (INK605)
100C-0090	13	1.0 mm² (INK653)	4 mm² (INK603)
100C-0120	15	1.5 mm² (INK650)	6 mm² (INK604)
100C-0190	23	4 mm² (INK603)	10 mm² (INK605)
140A-0120	12	1.0 mm² (INK653)	4 mm² (INK603)
140B-0090	15	1.5 mm² (INK650)	6 mm^2 (INI/(60.4)
140B-0120	18	2.5 mm² (INK602)	6 mm² (INK604)
140C-0050	13	1.0 mm² (INK653)	4 mm² (INK603)
140C-0120	21	2.5 mm² (INK602)	10 mm² (INK605)
140C-0170	29	4 mm² (INK603)	16 mm² (INK606)
140C-0350	53	10 mm² (INK605)	
200A-0090	13	1.0 mm² (INK653)	4 mm² (INK603)
200A-0120	16	2.5 mm² (INK602)	6 mm² (INK604)

13

1.0 mm² (INK653)

4 mm² (INK603)

Electrical	Connection
LIECUICAI	CONTECTION

Primary Part MLP	Motor Phase Current in A (Effective value)	Connection Cable at Single or Parallel Arrangement with separate Power Cables	Connection Cable at Parallel Arrangement with collective Power Cable
200B-0120	22	2.5 mm² (INK602)	40 mm² (INI/COE)
200C-0090	23,3	4 mm² (INK603)	10 mm² (INK605)
200C-0120	30	6 mm² (INK604)	16 mm² (INK606)
200C-0170	46	10 mm² (INK605)	25 mm² (INK607)
200D-0060	28	4 mm² (INK603)	10 mm² (INK605)
200D-0100	46	10 mm ² (INI/COE)	25 mm² (INK607)
200D-0120	53	10 mm² (INK605)	
300A-0090	19	2.5 mm² (INK602)	6 mm² (INK604)
300A-0120	23	4	10 mm² (INK605)
300B-0070	28	4 mm² (INK603)	
300B-0120	35	6 mm² (INK604)	16 mm² (INK606)
300C-0060	29	4 mm² (INK603)	
300C-0090	37	6 mm² (INK604)	25 mm² (INK607)

Fig.8-9: Necessary cross-section of the power wires depend on the motor type, arrangement and connection type

For additional description about power cables on primary parts and additional power cables refer to documentation "Connection Cable" MNR. R911282688.

8.1.3 Connection Designation on the Rexroth Drive Control Device

The following overview shows the connection and clamp designations for power connection and the motor temperature monitoring.

RF R	You will find further information about motor temperature overview
	in chapter 9.7 "Motor Temperature Monitoring " on page 132.

Rexroth Drive Control- ler	Terminal Block Desig- nation Power Connection	Clamp Designation Power Connection	Terminal Block Desig- nation Motor Temperature Monitoring	Clamp Designation Motor Temperature Monitoring
(IndraDrive) HMS0x.x HMD0x.x				MotTemp+ MotTemp-
(DIAX04) HDS0x.x	X5	A1, A2, A3	X6	TM+ TM-
(ECODRIVE) DKCxx.x				TM+ TM-

Fig.8-10: Terminal designation on Rexroth drive controllers

Separate arrangement

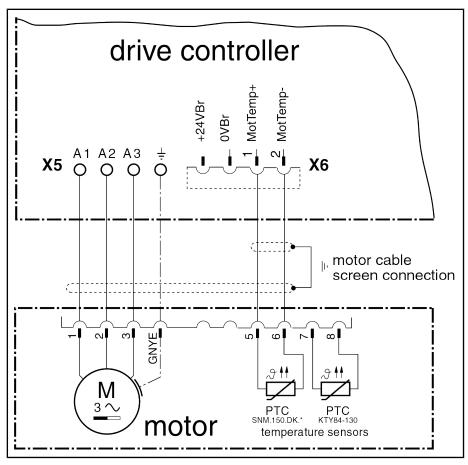


Fig.8-11: Connection on the drive-controller – separate arrangement primary part

Parallel Arrangement

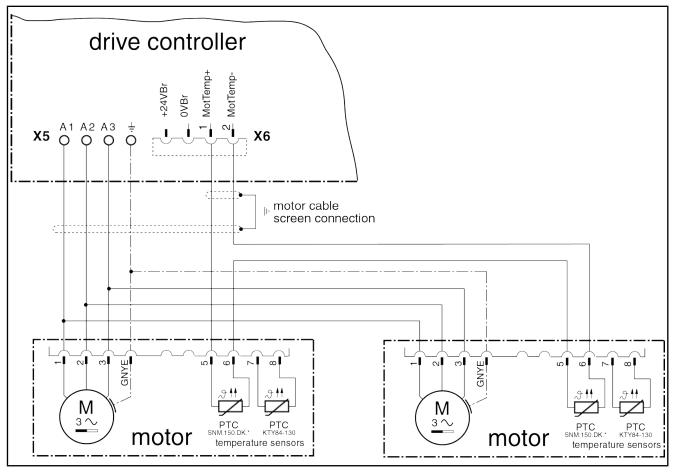
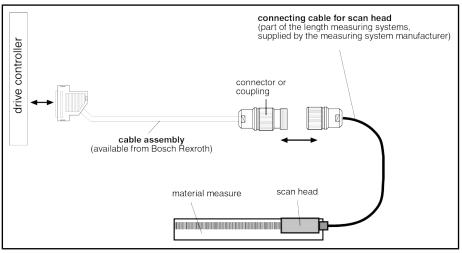


Fig.8-12: Connection on the drive-controller – parallel arrangement primary part

Connection Power Cable for Primary Part at Parallel Arrangement The connection of the power wires of the connection cable on the drive controller at parallel arrangement of the primary parts with outgoing cable in the cross-direction depend on the direction of the outgoing cable.

Connection at arrangement acc. to fig. 9-16 "Arrangement of the primary parts behind each other and cable entry in the same direction" on page 107					
(cable output in the same direc	tion)				
Drive-controller X5 A1 A2 A3					
Primary part 1	A1	A2	A3		
Primary part 2	A1	A2	A3		
Connection at arrangement acc. to fig. 9-20 "Option 1: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 108 and fig. 9-23 "Option 2: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 109					
(cable output in the opposite direction)					
Drive-controller X5 A1 A2 A3					


	Electrical	Connection
--	------------	------------

Connection at arrangement acc. to fig. 9-16 "Arrangement of the primary parts behind each other and cable entry in the same direction" on page 107 (cable output in the same direction)			
Primary part 1	A1	A2	A3
Primary part 2	A1	A3	A2

Fig.8-13: Connection of the power wires at parallel arrangement of primary parts on a drive-controller

8.2 Connection of Length Measurement System

The connection of the length measurement system is made via a ready-made cable.

Fig.8-14: Connection example length measurement system

The following table shows an overview of the ready-made cable to the connection of the length measurement system.

Measuring system type	Absolute, ENDAT	Incremental
Output variable	Stress	Stress
Signal flow line	Sinus	Sinus
Signal amplitude	1VSS	1VSS
Position interface	DAG	DLF

Depending on the connection mode of the length measuring system (flange socket or coupling), Rexroth offers two different ready-made connection cables to connect drive controller and measuring system:

Measuring system type	Absolute, ENDAT	Incremental
DIAX04 <> Flange socket	IKS 4142	IKS 4384
DKCxx.3 <> Flange sock-	IKS 4001	IKS 4002
et	IKS 4038	IKS 4041
IndraDrive <> Flange socket		
DIAX04 <> Coupling		IKS 4383
DKCxx.3 <> Coupling		IKS 4389
IndraDrive <> Coupling		IKS 4040
Fig.8-15: Connection components length measurement system		

For additional description see documentation "Connection Cable" selection data, MNR R911282688.

Application and Construction Instructions

9 Application and Construction Instructions

9.1 Functional Principle

The following figure shows the principal design of IndraDyn L motors.

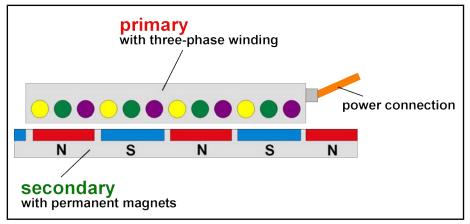


Fig.9-1: General construction of an IndraDyn L motor

The force generation of the IndraDyn L motor, a synchronous-linear motor, is the same as the torque generation at rotative synchronous motors. The primary part (active part) has a three-phase winding; the secondary part (passive part) has permanent magnets.

Both, the primary part and the secondary part can be moved.

Realization of any traverse path length can be done by stringing together several secondary part segments.

Axis Construction The IndraDyn L motor is a kit motor. The components primary and secondary part(s) are delivered separately and completed by the user by linear guide and the linear measuring system.

The construction of an axis fitted with an IndraDyn L motor normally consists of

- Primary part with three-phase winding,
- One or more secondary parts with permanent magnets,
- Linear scale
- Linear guide,
- Energy flow as well as
- Slide or machine construction

Application and Construction Instructions

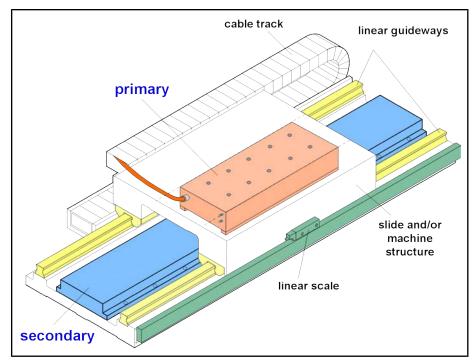


Fig.9-2: General construction of an axis with an IndraDyn L

For force multiplication can be two or more primary parts mechanically coupled, arranged parallel or in-line. For further information see chapter 9.4.2 "Several Motors per Axis" on page 104.

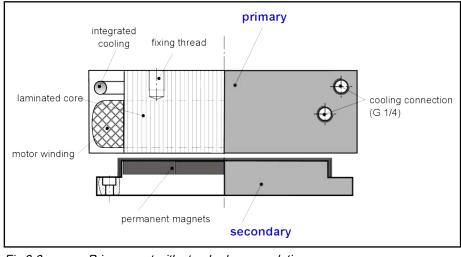
RF RF	Only the primary and the secondary part(s) belong to the scope of delivery of the motor.
R	Linear guide and length scale as well as further additional compo- nents have to be made available by the user. For recommendations to tested additional components, refer to chapter 15.1 "Recom- mended Suppliers of Additional Components " on page 247.

9.2 Motor Design

9.2.1 General Information

IndraDyn L motors of Bosch Rexroth are tested drive components. They have the following characters:

- Modular system with different motor sizes and lengths for feed forces up to 21.500 N per motor and speeds over 600 m/min
- Different winding constructions at any motor size for optimum adjustment to different speed demands.
- All motor components are completely encapsulated, i.e. crack initiation within casting compounds, damage or corrosion of magnets a.s.o. are excluded.
- Different designs regarding cooling and encapsulation of the primary part (see below: standard and thermo encapsulation)
- Protection class IP65 (all motor components)
- High operation safety for DC bus voltage up to 750V.
- No mechanical deterioration


- Protection of the motor winding against thermal overstress by integrated temperature sensors
- Flexible, shielded and strain-bearing power lead wire

Design of cooling and encapsulation To make the optimum motor for the different uses, regarding technical demands and costs available, are primary parts in different designs in cooling and encapsulation available.

- **Standard encapsulation:**stainless steel encapsulation with a liquid cooling integrated into the back of the motor to dissipate the lost heat.
- **Thermal encapsulation:**stainless steel encapsulation with an additional liquid cooling on the back of the motor and heat conductive plates for optimum thermal decoupling to the machine construction.

9.2.2 Primary Part Standard Encapsulation

At use with less thermal demands on the machine accuracy, primary parts in standard encapsulation present an economy solution. Primary parts with standard encapsulation are mainly used in the general automation sector. There, the electrical motor components are protected by a stainless steel encapsulation. The cooling system of this motor design is integrated into the motor and can only be used to discharge lost heat or keeping the specified continuous feedrate. It offers no additional thermal decoupling on the motor side to the machine.

Fig.9-3: Primary part with standard encapsulation

For further notes regarding liquid cooling refer to chapter 9.6 "Motor Cooling System" on page 116.

Main application area

The main application areas of this design of the primary part can be found in the sectors:

- General automation
- Handling

9.2.3 Primary Part Thermo Encapsulation

Primary parts in thermal encapsulation reach an high constant temperature on the mounting surface due to an additional – into the encapsulation integrated liquid coolant for thermal encapsulation to the machine construction. At design "Thermal encapsulation", a maximum temperature rise on the screw-on surface in opposite to the coolant inlet temperature of 2 K can be reached.

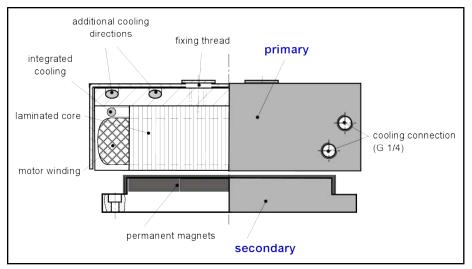


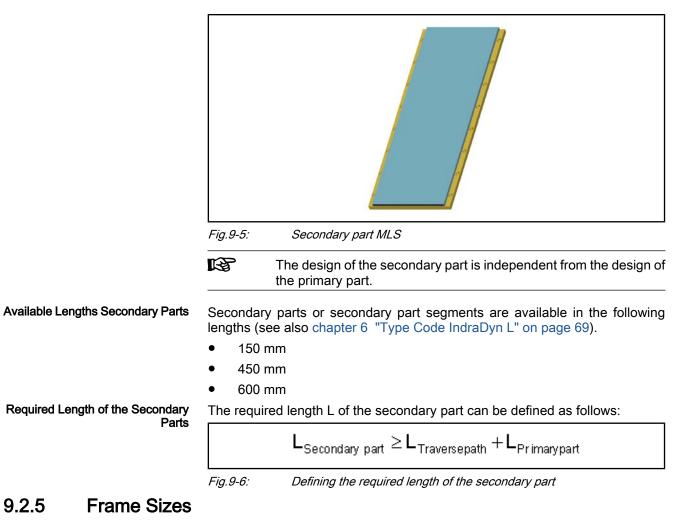
Fig.9-4: Primary part with thermo encapsulation

The primary part is not completely connected with the mounting surface on the machine side, but only lays on increased bearing points. This offers the following advantages:

- Additional thermal encapsulation and therewith further minimization of the possible heat-flow into the machine
- Processing of the screw-on surface on the machine side makes it easier to keep the necessary mounting tolerances.

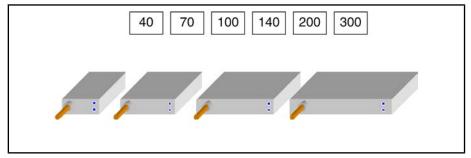
For further notes regarding liquid cooling refer to chapter 9.6 "Motor Cooling System" on page 116.

Main Application Area


- Main application areas of this primary part design are, e.g.
 - Machine tools
 - Precision applications

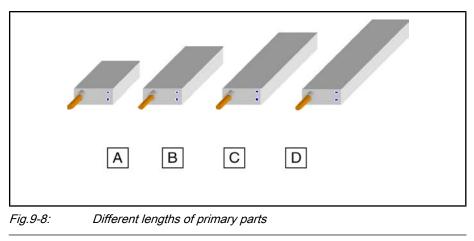
9.2.4 Design Secondary Part

The secondary part or a secondary part segment consists of a steel base plate with fitted permanent magnets. The fastening holes are located on the outer edge along the secondary part.


To ensure the utmost operation reliability, the permanent magnets of the secondary part are always protected against corrosion, action of outer influences (e.g. coolants and oil) and against mechanical damage, due to an integrated rustless cover plate.

It is possible to use a scraper direct on the secondary part (see chapter 9.20 "Wipers" on page 147).

For adjusting on different feed force requirements, Bosch Rexroth offers Indra-Dyn L motors in a modular system with different sizes and lengths.


The active breadth of primary and secondary parts at linear motors serve to define the size. A linear motor with e.g. size 100 has a laminated core and magnet breadth of 100 mm. The IndraDyn L modular system contains the following motor sizes:

Sizes

Fig.9-7: Sizes of IndraDyn L synchronous linear motors

Every primary part is graduated in different motor lengths. The designation of the length of the primary part is done by the letters A, B, C, D.

9.3 Requirements on the Machine Design

9.3.1 General Information

Derived from design and properties of linear direct drives, the machine design must meet various requirements. For example, the moved masses should be minimized whilst the rigidity is kept at a high level.

9.3.2 Mass Reduction

To ensure a high acceleration capability, the mass of the moved machine elements must be reduced to a minimum. This can be done by using materials of a low specific weight (e.g. aluminum or compound materials) and by design measures (e.g. skeleton structures).

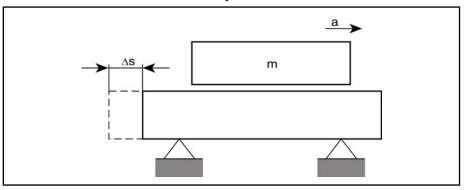
If there are no requirements for extreme acceleration, masses up to several tons can be moved without any problems. There is no control-engineering correlation between the moved slide mass and the motor's mass, as this is the case with rotary drives.

Precondition therefore is, a very rigid coupling of the motor to the weight.

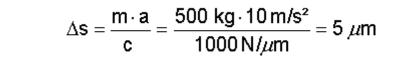
9.3.3 Mass Rigidity

In conjunction with the mass and the resulting resonant frequency, the rigidity of the individual mechanical components within a machine chiefly determines the quality a machine can reach. The rigidity of a motion axis is determined by the overall mechanical structure. The goal of the construction must be to obtain an axis structure that is as compact as possible.

Natural Frequency The increased loop bandwidth of linear drives required higher mechanical natural frequencies of the machine structure in order to avoid the excitation of vibrations.


To ensure a sufficient control quality, the lowest natural frequency that occurs inside the axis should not be less than approximately 200 Hz. The natural frequencies of axes with masses that are not constantly moving (e.g. due to workpieces that must be machined differently) change, so that the natural fre-

quency is reduced with $f \approx \sqrt{1/m}$ as the mass increases.


Mechanically Linked Axes The elasticity's of the axes (both, the mechanical and the control-engineering component) add up. This must be taken into account with respect to the rigidity of cinematically coupled axes.

If several axes must cinematically be coupled in order to produce path motions (e.g. cross-table or gantry structure), the mutual effects of the individual axes on each other should be minimized. Thus, cinematic chains should be avoided in machines with several axes. Axis configurations with long projections that change during operation are particularly critical.

Reactive Forces Initiated by acceleration, deceleration or process forces of the moved axis, reactive forces can deform the stationary machine base or cause it to vibrate.

Fig.9-9: Deformation of the machine base caused by the reactive force during the acceleration process

Deformation of displacement of the machine base in µm

- m Mass in kg
 - Acceleration in m/s²

Rigidity of the machine base in N/µm

Fig.9-10: Typical calculation of the machine base deformation

Integrating the linear scale

The rigidity of the length measuring system integration is particularly important. For explanations refer to chapter 9.15 "Length Measuring System" on page 139.

9.3.4 Protection of the Motor Installation Space

Δs

а

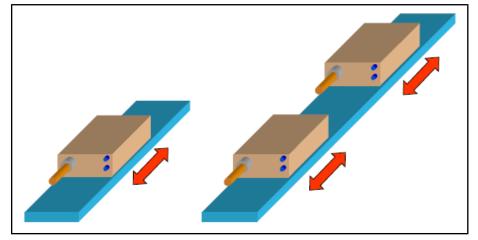
С

To avoid contamination of the motor during operation (due to any kind of residues, swarfs, respirable dust, grease of the guides, etc.) within the air gap between the primary and secondary part, you should especially pay attention to the protection of the motor installation space.

Heed appropriate protection measures when designing the machine construction, for example:

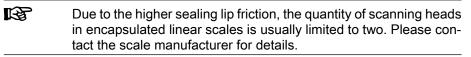
- self-made covers
- bellows covers

If dirt penetrates between the motor components due to insufficient protection measures, this can lead during operaton to ...


- an increased heat introduction due to friction between the motor components. Hereby, temperatures can occur that lead to motor breakdown.
- Grinding traces and/or scratch-formation on the motor components which can lead to motor breakdown due to high mechanical force effect.

Please observe that dirt can also be brought into via coolant residues, preasure air and other machine parts (e.g. grease of the guides). This must be prevented. Make sure by regularly maintenance of the safety measures that their function is still kept and the motor components could not be damaged.

9.4 Arrangement of Motor Components


9.4.1 Single Arrangement

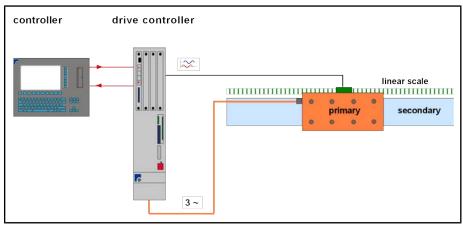

The single arrangement of the primary part is the most common arrangement.

Fig.9-11: Single arrangement of primary parts

The independent operation of two or more primary parts on one secondary part is possible, too. In such an arrangement, the length measuring system can also be equipped with two or more scanning heads.

Fig.9-12: Controlling a linear motor with single arrangement of the motor components

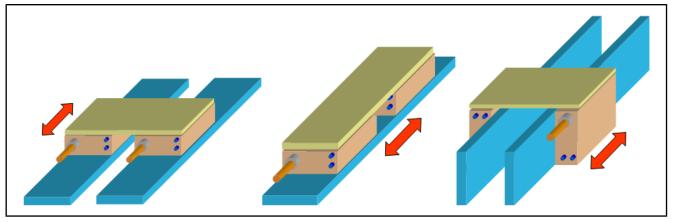
9.4.2 Several Motors per Axis

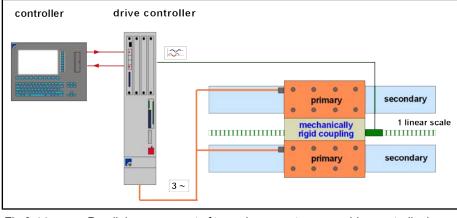
General Information

The arrangement of several motors per axis provides the following benefits:

Multiplied feed forces

 With corresponding arrangement, compensation of the attractive forces "outwards"




Fig.9-13: Arrangement of several motors per axis

Depending on the application, the motors can be controlled in two different ways:

- Two motors at one drive controller and one linear scale (parallel arrangement)
- Two motors at two drive controllers and two linear scales (Gantry arrangement)

Parallel Arrangement

The arrangement of two or more primary parts on one drive controller in conjunction with a linear scale is known as parallel arrangement. Parallel arrangement is possible if the coupling between the motors can be very rigid.

Fig.9-14: Parallel arrangement of two primary parts on one drive controller in conjunction with a length measuring system

To ensure successful operation, the axis must fulfill the following requirements in parallel arrangement:

- Identical primary and secondary parts
- Very rigid coupling of the motors within the axis
- Position offset between the primary parts <1 mm in feed direction
- Position offset between the secondary parts <1 mm in feed direction
- Same pole sequence of the secondary parts
- If possible, load stationary and arranged symmetrically with respect to the motors

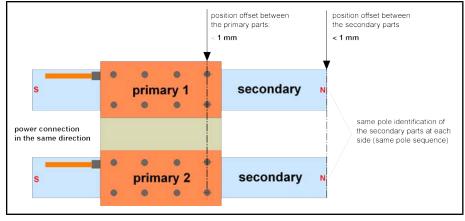
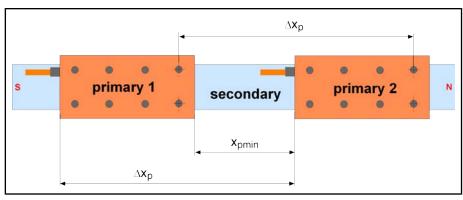


Fig.9-15: Alignment of motor components in parallel arrangement

The mounting holes of the primary parts are used for defining the correct position of the paralleled motors. Use always the same hole in the grid of both primary parts (see fig. 9-15 "Alignment of motor components in parallel arrangement" on page 106). An offset of the hole grid between the primary parts is only permitted in the structures shown in fig. 9-17 "Determining the grid distance between the primary parts with cable entries in the same direction" on page 107 or fig. 9-18 "Distance xpmin to be kept between the two primary parts with cable entries in the same direction" on page 107.

The face ends of the primary parts may alternatively be used if the mounting holes cannot be employed as position reference. The motor parts have the corresponding tolerances.


Parallel arrangement: Double Comb Arrangement

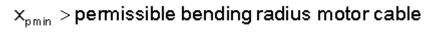
In a parallel arrangment – also within a Gantry arrangement – the primary parts in feed direction can be mechanically coupled and arranged in the form of a "double comb arrangement" (see right-hand side). In addition to the force multiplication, the attractive forces between primary and secondary part are compensated towards the outside. With the corresponding arrangement, the linear guides are not stressed additionally, and may even be sized smaller.

```
Double comb arrangement (acc. to fig. 9-13 "Arrangement of sev-
eral motors per axis" on page 105 right-hand side) does not require
a minimum distance to be kept between the two secondary part
mounting surfaces.
```

Parallel arrangement: Arrangement of primary parts in succession

In a parallel arrangement – also within a Gantry arrangement – the primary parts in feed direction can be mechanically coupled and arranged in succession (see fig. 9-13 "Arrangement of several motors per axis" on page 105, center).
 To ensure successful operation, the primary parts must be arranged in a specific grid. The determination of the grid sizes that must be adhered, depends on the direction of the cable entry and the permissible bending radius of the power cable.
 Cable entry in the same direction
 If the primary parts are arranged behind each other with the cable entries in the same direction acc. to fig. 9-16 "Arrangement of the primary parts behind each other and cable entry in the same direction" on page 107, an integer multiple of twice the electrical pole pitch must be adhered to:

Fig.9-16: Arrangement of the primary parts behind each other and cable entry in the same direction


When you determine the correct primary part distance with cable entries in the same direction acc. to fig. 9-16 "Arrangement of the primary parts behind each other and cable entry in the same direction" on page 107, you must always use the same reference point for both primary parts (e.g. the same fastening hole).

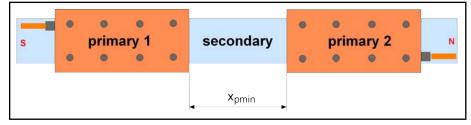
$\Delta \mathbf{x}_{P} = \mathbf{n} \cdot 2 \cdot \boldsymbol{\tau}_{p}$		
Δx_P	Required grid spacing between the primary parts in mm	
TP	Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)	
n	Integer factor (depends on mounting distance)	
Fig.9-17:	Determining the grid distance between the primary parts with cable en- tries in the same direction	

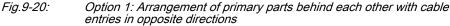
Minimum Distances between Primary Parts According to fig. 9-16 "Arrangement of the primary parts behind each other and cable entry in the same direction" on page 107 and fig. 9-17 "Determining the grid distance between the primary parts with cable entries in the same direction" on page 107 result size-related minimum distances between the primary parts at a motor arrangement with cable output into the same direction:

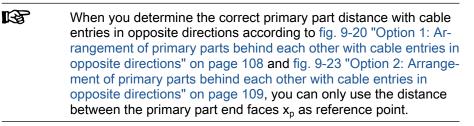
Motor version		X _{pmin} in mm
Standard encapsulationframe sizes (all)		15 mm + n · 2 · τ _ρ
Thermal enca frame sizes (•	65 mm + n · 2 · τ _ρ
n T _P	The integer factor n must be chosen in that way, so that the following conditions can be kept. Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)	
Fig.9-18:	Distance xpmin to be kept between the two primary parts with cable entries in the same direction	

Requirement

Fig.9-19: Distance xpmin to be kept between the two primary parts with cable entries in the same direction


Cable entry in opposite direction


Option 1:


R

If the primary parts are arranged behind each other and with cable entries in opposite directions to fig. 9-20 "Option 1: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 108, a defined

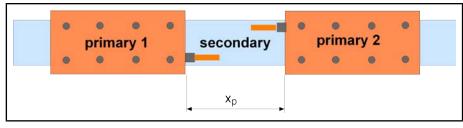
distance must be kept between the primary parts according to fig. 9-21 "Determining the grid distance between primary parts with cable entries in opposite directions" on page 108 and fig. 9-22 "Distance xpmin to be kept between the two primary parts with cable entries in opposite direction" on page 108.

$\mathbf{x}_{P} = \mathbf{n} \cdot 2 \cdot \mathbf{\tau}_{p} + \mathbf{x}_{pmin}$		
x _P	Required grid spacing between the primary parts in mm	
т _Р	Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)	
n	Integer factor (depends on mounting distance)	
Fig.9-21:	Determining the grid distance between primary parts with cable entries in opposite directions	

Minimum distance between the primary parts (option 1)

For a motor arrangement with cable entries at opposite directions, the following size-related minimum distances between primary parts result from:

Motor version	X _{pmin} in mm
Standard encapsulation	65
Frame sizes (all)	00
Thermal encapsulation	50
Frame sizes (all)	59


Fig.9-22: Distance xpmin to be kept between the two primary parts with cable entries in opposite direction

Cable Entry in opposite Direction Option 2:

If the primary parts are arranged in a row and with cable entries in opposite directions to fig. 9-23 "Option 2: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 109, a defined distance must be kept between the primary parts according to fig. 9-24 "Determining the grid distance between primary parts with cable entries in opposite directions" on page 109 and fig. 9-25 "Distance xpmin to be kept between the two primary parts with cable entries in opposite direction" on page 109.

R

Application and Construction Instructions

Fig.9-23: Option 2: Arrangement of primary parts behind each other with cable entries in opposite directions

When you determine the correct primary part distance with cable entries in opposite directions according to fig. 9-20 "Option 1: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 108 and fig. 9-23 "Option 2: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 109, you can only use the distance between the primary part end faces x_p as reference point.

	$\mathbf{x}_{P} = \mathbf{n} \cdot 2 \cdot \mathbf{\tau}_{p} + \mathbf{x}_{pmin}$
x _P	Required grid spacing between the primary parts in mm
TP	Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)
n	Integer factor (depends on mounting distance)
Fig.9-24:	Determining the grid distance between primary parts with cable entries in opposite directions

Minimum Distance between the Primary Parts (Option 2)

For a motor arrangement with cable entries at opposite directions, the following size-related minimum distances between primary parts result from:

	Motor version		X _{pmin} in mm	
		Standard encapsulation	40mm + n· 2· 7₀	
		Frame sizes (all)	40mm · m 2 ι _p	
		Thermal encapsulation	71mm + n· 2· π	
		Frame sizes (all)	7 mm · m 2 %p	
	n The integer factor n must be chosen in that way, so th conditions can be kept.			
	T _P Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5			
	Fig.9-25:	Distance xpmin to be kept between the entries in opposite direction	two primary parts with cable	
Requirement	$x_{pmin} > permissible bending radius motor ca$			
	Fig.9-26:	Distance xpmin to be kept between the a entries in opposite direction	two primary parts with cable	

Power Cable Connection

The connection of the power wires of the connection cable on the drive controller at parallel arrangement of the primary parts with outgoing cable in the cross-direction depend on the direction of the outgoing cable. R

Application and Construction Instructions

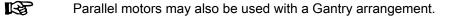
(see fig. 9-16 "Arrangement of the primary parts behind each other and cable entry in the same direction" on page 107)

Drive-controller X5	1	2	3
Primary part 1	1	2	3
Primary part 2	1	2	3

Connection at arrangement with cable output into the opposite direction

(see fig. 9-20 "Option 1: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 108 and fig. 9-23 "Option 2: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 109)

Drive-controller X5	1	2	3
Primary part 1	1	2	3
Primary part 2	1	3	2


Fig.9-27: Connection of the power wires at parallel arrangement of primary parts on a drive-controller

The primary part 1 according to fig. 9-20 "Option 1: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 108 and fig. 9-23 "Option 2: Arrangement of primary parts behind each other with cable entries in opposite directions" on page 109is always the reference motor that is used for determining the sensor polarity and for commutation setting (refer also to chapter 14 "Commissioning, Operation and Maintenance" on page 227). Ensure that the secondary part is correctly aligned.

You will find further information about electrical connection in chapter 8 "Electrical Connection" on page 87.

Gantry Arrangement

Operation with two linear scales and drive controllers (Gantry arrangement) should be planned if there are load conditions that are different with respect to place and time, and sufficient rigidity between the motors cannot be ensured. This is frequently the case with axis in a Gantry structure, for example.

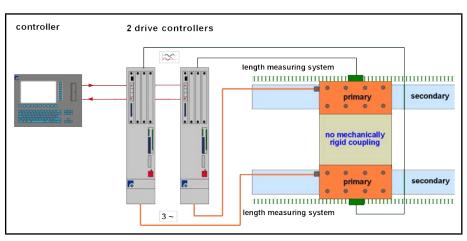


Fig.9-28: Gantry arrangement

With Gantry arrangements it must be remembered that the motors may be stressed unsymmetrically, although the position offset is minimized. As a consequence, this permanently existing bas load may lead to a generally higher stress than in a single arrangement. This must be taken into account when the drive is selected.

The asymmetric capacity can be reduced to a minimum by exactly aligning the length measuring system and the primary and secondary parts to each other, and by a drive-internal axis error compensation.

9.4.3 Vertical Axis

WARNING	Uncontrolled movements ⇒ When linear motors are used in vertical axes, it must be taken into account that the motor is not self-locking when power is switched off. Sinking the axis can only be secured by an appropriate holding brake (see chapter 9.17 "Brak- ing Systems and Holding Devices" on page 145).		
	Suitable holding devices must be used for preventing the axis from sinking after the power has been switched off. These holding devices can be actuated electrically, pneumatically or hydraulically.		
	B •	Adequate holding devices are integrated in most of today's weight compensation systems.	
	•	On vertical axis, the use of an absolute measuring system is recommended. Alternatively, also an incremental measuring system, in connection with a Hall sensor box can be used (see chapter 7 "Accessories and Options" on page 85).	
Weight Compensation	posed to an un and the acceler	used weight compensation ensures that the motor is not ex- inecessary thermal stress that is caused by the holding forces ration capability of the axis is independent of the motion direction. npensation can be pneumatic or hydraulic.	
	• .	nsation with a counterweight is not suitable since the counter- so be accelerated.	

9.5 Feed and Attractive Forces

9.5.1 Attractive Forces between Primary and Secondary Part

When it is installed, a synchronous linear motor has a permanently effective attractive force between primary and secondary part that results from its principle. With synchronous linear motors, this attractive force also exists when the motor is switched off.

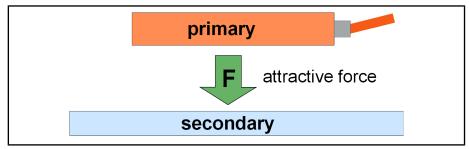


Fig.9-29: Attractive force between primary and secondary part

Considering the Attractive Force in Motor Installation	These attractive forced must always be taken into account in the mechanical design of the system. With an unfavorable arrangement of the motors, the attractive forces can cause deformations (deflection) in the machine structure and unacceptable transverse stress on the linear guides. The following points should therefore be taken into account during the design integration of the motors:	
	 Arrange the linear guides as close to the motor as possible. 	
	• To compensate the attractive forces, you can use the parallel arrangement shown at the right-hand side in fig. 9-13 "Arrangement of several motors per axis" on page 105.	
	Possible motor damaged by insufficient stiff construction of the machine due to a continuous and strong attractive force between primary and secondary part!	
CAUTION	due to a continuous and strong attractive force between primary and	
CAUTION	due to a continuous and strong attractive force between primary and secondary part! Depending on the motor arrangement, the attractive forces must be accom-	

9.5.2 Air Gap-related Attractive Forces between Primary and Secondary Part

The attractive force rises as the distance between primary and secondary part is reduce.

When lowering the primary part on the secondary part, result by reducing the air gap increasing attractive forces.

The path in the following diagram shows the attractive force as a function of the air gap.

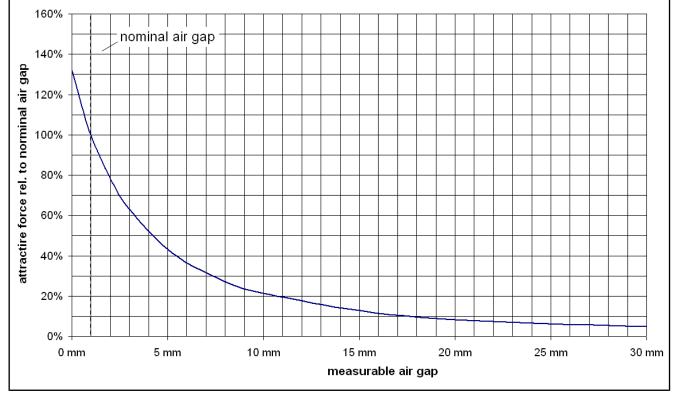


Fig.9-30:

-30: Attractive force vs. distance between primary and secondary part

9.5.3 Air Gap-related attractive Forces vs. Power Supply

The attractive force decreases with rising power supply of the primary part. The path in the following diagram shows the attractive force vs. the power supply.

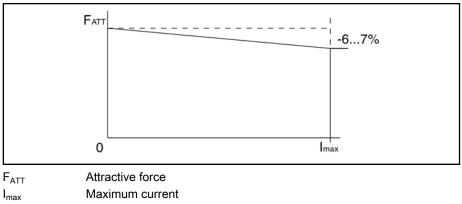
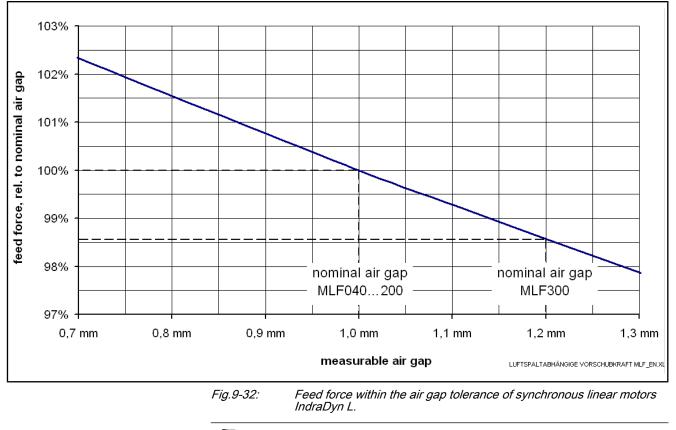



Fig.9-31: Attractive force vs. power supply

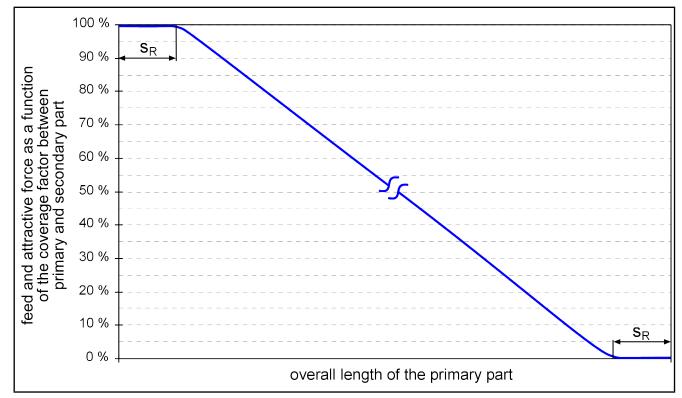
9.5.4 Air Gap-related Feed Force

Air Gap Tolerances

The feed force detailed in the specifications are related to the specified rated air gap. The tolerances permissible for the measurable air gap have a slight effect on the feed forces that can be achieved. The following diagram shows this relationship:

The sizes in fig. 9-32 "Feed force within the air gap tolerance of synchronous linear motors IndraDyn L." on page 114 are only valid for IndraDyn L synchronous linear motors and there is no general correlation for other motor types.

9.5.5 Reduced overlapping between Primary and Secondary Part


When moving in the end position range of an axis, it can be necessary that the primary part moves beyond the end of the secondary part. This results in a partial coverage between primary and secondary part.

If primary and secondary part are only partially covered, follows a reduced feed force and attractive force.

Inception of the Force Reduction The force reduction does not start immediately. It differs according to the encapsulation types and the installation position of the primary part.

Outside the beginning and end areas(s_{R1} or s_{R2}), the force is reduced linearly as a function of the reduced coverage area.

The following diagram illustrates the correlation between the coverage between primary and secondary part and the resulting force reduction.

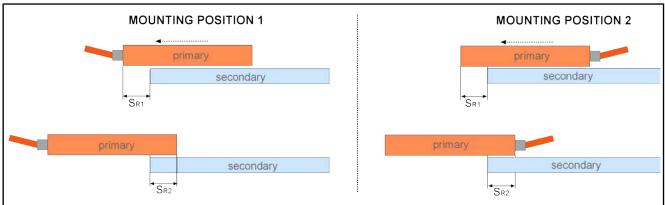


Fig.9-34: Presentation of force reduction with regard to Fig. 9-33

	Installation position 1		
Motor version	S _{R1} [mm]	S _{R2} [mm]	
Standard encapsulation	30	5	
Thermal encapsulation	52	8	
	Installation	position 2	
Standard encapsulation	5	30	
Thermal encapsulation	8	52	

Fig.9-35: Partial coverage vs. installation position

The partial coverage of primary and secondary parts must not be used in continuous operation since there is an increased current consumption of the motor. Instabilities in the control loop can be expected from a certain reduction of the degree of coverage onwards.

Malfunctions and uncontrolled motor movements due to partial coverage of primary and secondary part!

 $\Rightarrow~$ Partial coverage of primary and secondary part only when moving to the end position during a drive error

 \Rightarrow Minimum coverage factor 75%

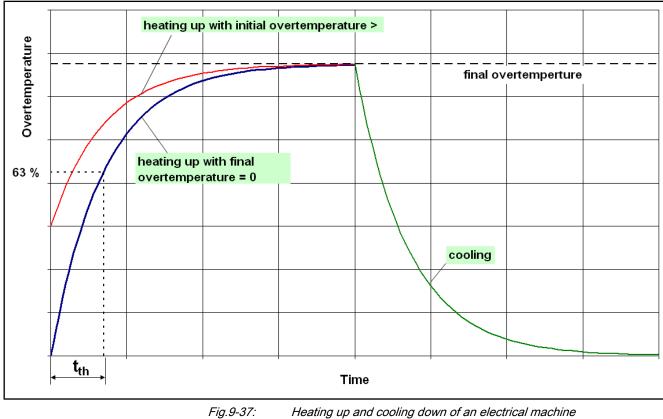
9.6 Motor Cooling System

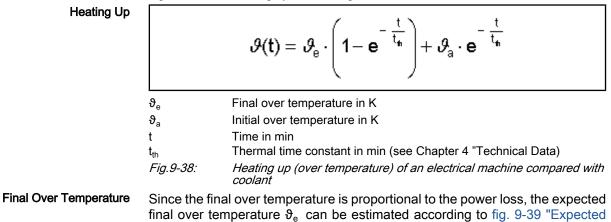
9.6.1 Thermal Behavior of Linear Motors

The total losses of synchronous linear motors are chiefly determined by the direct load loss of the primary part due to the low relative velocities between primary and secondary part:

$$\mathbf{P}_{V} \approx \mathbf{P}_{VI} = \frac{\mathbf{3}}{\mathbf{4}} \cdot \mathbf{I}^{2} \cdot \mathbf{R}_{12} \cdot \mathbf{f}_{T}$$

P _V	Total loss in W
P _{VI}	Direct load losses in W
I	Current in motor cable in A
R ₁₂	Electrical resistance of the motor at 20°C in Ohm (see Chapter 4 Technical Data)
f _T	Factor temperature-related resistance raise
Fig.9-36:	Power loss of synchronous linear motors


RF RF	When you determine the power loss according to fig. 9-36 "Power
	loss of synchronous linear motors" on page 116 you must take the temperature-related rise of the electrical resistance into account. At
	a temperature rise of 115 K (from 20 °C up to 135 °C), for example,
	the electrical resistance goes up by the factor $f_T = 1.45$.


Thermal Time Constant The temperature variation vs. the time is determined by the produced power loss and the heat-dissipation and –storage capability of the motor. The heat-dissipation and –storage capability of an electrical machine is (combined in one variable) specified as the thermal time constant.

With liquid cooling systems, the thermal time constant is between 5...10 min (depending on size).

The following figure (fig. 9-37 "Heating up and cooling down of an electrical machine" on page 117) shows a typical heating and cooling process of an electrical machine. The thermal time constant is the period within which 63% of the final over temperature is reached. With liquid cooling, the cooling time constant corresponds to the heating time constant. Thus, the heating process and the cooling process can both be specified with the specified thermal time constant (heating time constant) of the motor.

Together with the duty cycle, the correlation to fig. 9-38 "Heating up (over temperature) of an electrical machine compared with coolant" on page 117 and fig. 9-40 "Cooling down of an electrical machine" on page 118 are used for defining the duty type, e.g. acc. to DIN VDE 0530.

final over temperature of the motor" on page 118:

$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	me in W
ϑ_{emax} Maximum final over temperature of the motor in K	
F _{eff} Effective force in N (from application)	
F _{dn} Rated force of the motor in N (see Chapter 4 "Technical data"))
t _{th} Thermal time constant in min (see Chapter 4 "Technical Data)	
Fig.9-39: Expected final over temperature of the motor	

Cooling Down

 ϑ_{e}

$artheta(t) = artheta_{ m e} \cdot {f e}^{-{t\over t_{ m tm}}}$	
Final over temperature or shutdown temperature in K Time in min Thermal time constant in min (see Chapter 4 "Technical Data)	

Fig.9-40: Cooling down of an electrical machine

9.6.2 Cooling Concept of IndraDyn L Synchronous Linear Motors

The request for highest feed forces and minimum installation volume usually requires linear motors to be equipped with a liquid cooling. The liquid cooling ensures:

- that the power loss is removed and, consequently, rated feed forces are maintained;
- that a certain temperature level is maintained at the machine

The cooling and encapsulation concept of IndraDyn L motors contains two different solutions:

Standard Encapsulation Primary parts with standard encapsulation are mainly used in the general automation sector. The cooling system of this motor design is integrated into the motor and can only be used to discharge lost heat or keeping the specified continuous feedrate. It offers no additional thermal decoupling on the motor side to the machine. The maximum temperature of the contact surface can locally rise up to 60 °C. These maximum temperature gradients can occur independently of the coolant inlet temperature.

Thermal Encapsulation For an optimum thermal decoupling between the motor and the machine structure, the primary parts of the thermal encapsulation version have an additional liquid cooling system at the back of the motor and at longitudinal and frond ends. The constant temperature that can easily be attained and the minimum heat transfer into the machine make the primary parts of the thermal encapsulation version particularly suitable for the utilization in machine tools and in other precision applications. Inside the motor there is already an optimum connection between the internal cooling circulation used for removing the power loss and the cooling ducts of the thermal encapsulation.

The primary part is not completely connected with the mounting surface on the machine side, but only lays on increased bearing points. This provides an additional thermal decoupling and, consequently, further minimization of the possible heat transfer into the machine (see fig. 9-41 "Cooling concept for thermal encapsulation" on page 119).

Using the thermal encapsulation does not provide any improved performance date, e.g. for the continuous feed force. The power ratings are identical for both versions.

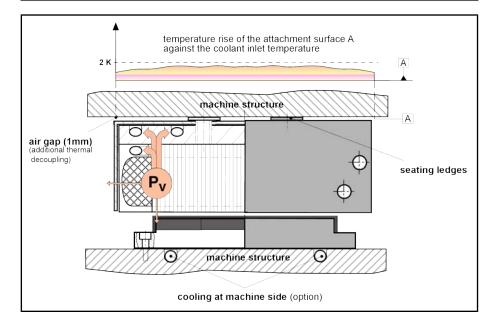


Fig.9-41: Cooling concept for thermal encapsulation

Secondary Parts

The secondary version is identical for both primary part versions. The secondary part does not develop any power loss. With inadvertent conditions (extended standstill or slow velocity of the primary part together with a simultaneously acting high continuous force), there can be a heat transfer by the primary part due to radiation or convection.

The secondary part does not develop any power loss. The maximum heat infiltration possible of the primary part at standstill and continuous nominal force is approximately 3% of the motor's nominal power loss.

The heat transfer depends on the ambient temperature and on the installation conditions in the machine.

To maintain a constant temperature level in the machine, cooling can be done at the machine side, e.g. via two cooling pipes (seefig. 9-41 "Cooling concept for thermal encapsulation" on page 119).

9.6.3 Coolant Medium

General Information

The specified motor data and the characteristics of the motor cooling system (e.g. continuous feed forces, pressure losses, and flow characteristics), and all the other specifications in this Chapter are related to liquid cooling with coolant water. Most cooling devices use water, too.

The following coolants can be used:

- Water
- Oil
- Air

WARNING

R)	The specified motor data and the characteristics of the motor cool- ing system (e.g. continuous feed forces, pressure losses, and flow characteristics), and all the other specifications in this Chapter are
	related to liquid cooling with coolant water.

This data is no longer valid and must again be calculated or determined empirically if coolants with different material characteristics are used.

An impairment of the thermal decoupling may also have to be taken into account, if necessary.

Impairing the cooling effect of damaging the cooling system!

⇒ Adjust coolant and flow to the required motor performance data

 $\Rightarrow~$ With coolant water use anticorrosion agent and observe the specified mixture and the pH-value.

- ⇒ Use approved anticorrosion agents, only
- ⇒ Do not use cooling lubricants from machining process
- ⇒ Filter the coolant medium
- ⇒ Do not use flowing water
- ⇒ Use a closed cooling circuit
- ⇒ Adhere to the specified inlet temperatures
- ⇒ Keep the maximal pressure
- ⇒ Motor operation not without liquid cooling

A cooling with floating water from the supply network is not admissible. Calcareous water can cause deposits or corrosion and damage the motor and the cooling system. Water used as cooling water has to meet certain criteria and, if applicable, has to be treated accordingly. You will get detailed information from your manufacturer for coolant additives.

Danger of damage due to unsufficient water quality in the coolant circuit!

Deposits within the cooling system can reduce the coolant flow and thereby reduce the power of the cooling system.

Please make sure that the used water has the following characteristics:

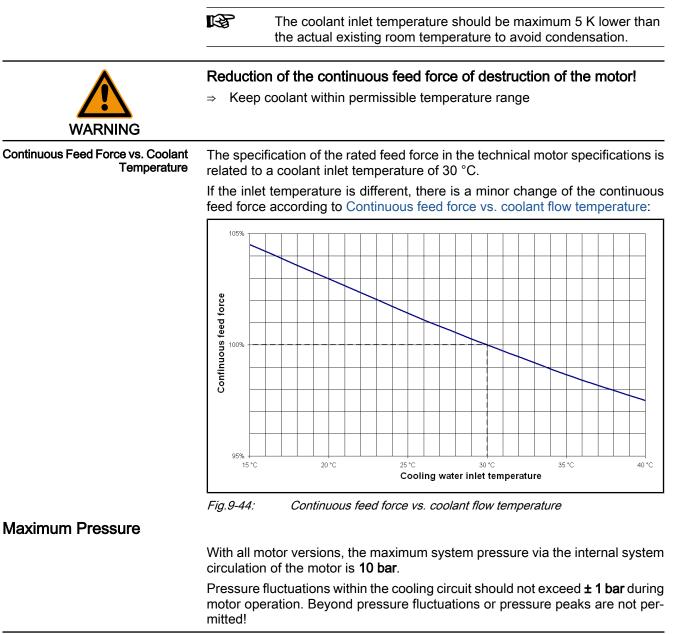
- pH-value: 7 ... 8,5
- Grade of hardness: 10° dH
- Chloride: max. 20 mg / I
- Nitrate: max. 10 mg / l
- Sulfate: max. 100 mg / I
- Insoluble substances: max. 250 mg / I

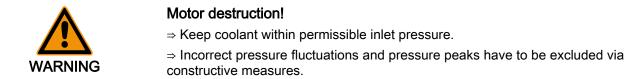
Normally, tap water meets these demands.

Observe further notes regarding suitable consistence of the coolant.

pH-Value Not only the mixture, but also the pH-value of the used coolant must be checked in suitable distances. The coolant should be chemically neutral. Larger deviations can lead to changes in the stability of the emulsion, the behavior towards sealant, and the corrosion protection capability.

Corrosion Protection		and for chemical stabilizations of the second state of the second	
	Use of too aggressive co reparable motor damages	olants, additives, or coolin s.	g lubricants can cause ir-
	• Use systems with a	closed circulation and a fin	e filter ≤ 100 µm.
		mental protection and was on when selecting the coo	
Cleaning the Coolant Circuit) the cooling system in reg of the machine and cooling	
		unsuitable cleaning agents This type of damages doe	
\bigwedge	Risk of damage to the ragents! Invalidation of v	notor cooling system by warranty!	unsuitable cleaning
CAUTION		cooling, only liquids or age ling system and do not rea	
	⇒ Observe the information cooling system.	n by the manufacturers of t	he cleaning agent and the
	coolant must l	n of the motor, e.g. in case be removed completely out otor protection reasons.	
Coolant Additives			
Coolant Additives			
Recommended Manufacturers of Coolant Additives			
	Bosch Rexroth recommer Deutschland GmbH.	nds using coolant additives	of the company NALCO
		the cooling system, the us use cooling water" and "wa	
	are completel	g size and the ingredients of y adapted to the correspon fill them into the coolant re- ratios.	ding system volume and
	Ready-to-use cooling wat	er (company NALCO)	
	System volume in liters	Ordering designation	Additives NALCO
	0,5 50	Nalco PCCL100.11R	PCCL100
	Fig.9-42: Ready-to-us	e cooling water (company NA	LCO)
Coolant Water NALCO PCCL100		v-to-use, preserved cooling s supplied directly to the clo treatment concentration.	


Nalco PCCL100 contains a corrosion inhibitor protecting iron, copper, copper alloys and aluminum against corrosion. Nalco PCCL100 is free of nitrite and minimizes the micro-biological growth.


Water treatment kits (company NALCO)

System volume in liters	Ordering designation	Additives NALCO
50 100	480-BR100-100.88	
100 200	480-BR100-200.88	TRAC100
200 350	480-BR100-350.88	7330 73199
350 500	480-BR100-500.88	10100

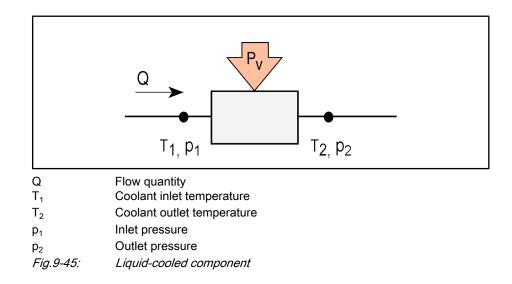
	Fig.9-43:	Water treat	ment kits (company NALCO))
Coolant Additive NALCO TRAC100	cooling sy dosages t protects t metal, cop	vstems. Option he product aut he system. NA oper alloys and	ally with TRASAR technol omatically to its target con LCO TRAC100 is a comp	nibitor for the use in closed ogy: it monitors, shows and centration and continuously lete inhibitor protection iron on. NALCO TRAC100 is free -biological control.
Coolant additive NALCO 7330		30 is a non-oxic cooling circuit	-	and suiteable for application
Coolant additive NALCO 73199			ic corrosion inhibitor supp ction layer for non-ferrous	orting a fast own protection metals.
	Nalco. It o	comprises not o		vater treatment program by o test methods, service and er of the products.
	minimum	requirements.	Consult Nalco on any add	r the user and describes the itional equipment, tests and em protection of the cooling
	For additi	onal informatio	n and order placement, pl	ease contact:
	NALCO E	eutschland Gr	nbH	
	Plankstr.	26		
	71691 Fre	eiberg/Neckar,	Germany	
	Fax +49(0)7141-703-239			
	slund@na	alco.com		
	www.nalc	o.com		
	R.	carry out invo	th is not in a position to gi estigations regarding appl ditives, or operating condit	icability of process-related
			system are generally the i	lants and the design of the responsibility of the machine
Coolant Temperature				
•	T IA			
Temperature Range	justable c	oolant inlet ten	nperature depends from the	e is at +15 +40°C. The ad- ne existing ambient temper- an the measured ambient

temperature. An overstepping of the recommended temperature range leads to a stronger reduction of the continuous feed force.

9.6.4 Operation of IndraDyn L Synchronous Linear Motors without Liquid Cooling

Theoretically an operation of IndraDyn T-motors without any liquid coolant is possible.

Therefore, please heed the following restrictions:

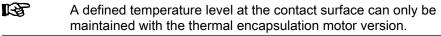

• Without liquid coolant only **reduced power data** are available. These are listed in this documentation.

	• The stated values in the data sheets regarding rated force and rated current of the motors must be lowered depending on the coupling of the motors to ~40 % of the stated value.
	• A higher temperature load of the machine can be expected This results in an extension of the nominal air gap, which is stated in the particular data sheets of the motors. It must be extended by 0.2 mm.
	It does not reduce the available maximum force of the motors.
	Depending on the load, the temperature at the contact surface of the primary part may rise up to 140%C without liquid cooling. The power loss of the motors is dissipated over the screw-surface and the machine construction on the customer side.
	Drastic reduction of the rated feed force and significant heating and stress of the machine structure if synchronous linear motors are used without liquid cooling!
WARNING	⇒ Provide liquid cooling
	\Rightarrow The reduction of the rated force and the heating of the machine structure (stress due to expansion) must be included in the sizing and design of axes that are used without liquid cooling.
	⇒ Reduce the current over the parameter S-0-0111 on the non-water cooled motor when start-up! Without a reduction of the rated current, the motor heats up so fast that the thermal contacts cannot switch off the motor in every case on time. An overheated winding is the consequence. Due to the overheated winding, the winding insulation is weak or in an extreme case destroyed.
	Therefore, note the details about parameterization withinchapter

Therefore, note the details about parameterization withinchapter 14.4 "Parameterization" on page 229 about operating an IndraDyn L synchronous linear motor withour liquid cooling.

9.6.5 Sizing the Cooling Circuit

General Information



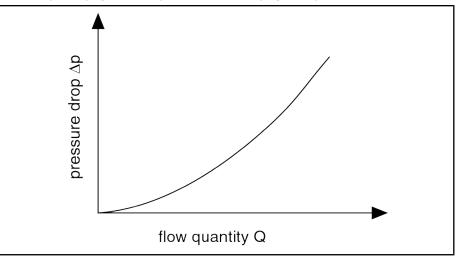
Coolant Temperature Rise	$\Delta T = T_2 - T_1$		
	T ₁ T ₂ ΔT <i>Fig.9-46:</i>	Coolant inlet temperature in K Coolant outlet temperature in K Coolant temperature rise in K <i>Coolant temperature rise in K</i>	
Pressure Drop		$\Delta \mathbf{p} = \mathbf{p}_1 - \mathbf{p}_2$	
	Ρ ₁ Ρ ₂ Δp <i>Fig.9-47:</i>	Inlet pressure Outlet pressure Pressure drop <i>Pressure drop across traversed compone</i>	ent
Design Criteria	Related to the motor, two basic application-related requirements must be dis- tinguished when the cooling circuit of synchronous linear motors is sized.		
	 Liquid cooling is only used for removing the power loss and thus for main- taining the specified rated forces (e.g. for standard encapsulation motor version) 		
		ame time, liquid cooling shall ensure a ontact surface (e.g. for the thermal end	
Flow Quantity			
Coolant Flow to maintain the Rated Feed Force	Rexroth recommends to dimension the coolant flow for motors up to size 070 to \sim 5 l/min, for size 100 to \sim 6 l/min.		
		n coolant flow required to maintain the "Technical Data".	rated feed force is defined
	The specifica 10 K.	tion of this value is based on a rise of	the coolant temperature by
	fig. 9-48 "Coolant flow required for removing a given power loss." on page 125 and fig. 9-49 "Substance values of different coolants at 20°C" on page 125 are used to determine the necessary coolant flow at different temperature rises and / or different coolants:		
	$\mathbf{Q} = \frac{\mathbf{P}_{co} \cdot 60000}{\mathbf{c} \cdot \boldsymbol{\rho} \cdot \Delta \mathbf{T}}$		
	Q Ρ _{co} c ΔT <i>Fig.9-48:</i>	Rated coolant flow in l/min Removed power loss in W Specific heat capacity of the coolant in J Density of the coolant in kg/m ³ Coolant temperature rise in K <i>Coolant flow required for removing a give</i>	
	Coolant	Specific heat capacity of the coolant in J / kg \cdot K	Density ρ in kg/m³
	Water	4183	998,3
	Thermal oil (example)	1000	887
	Air	1007	1,188
	Fig.9-49:	Substance values of different coolants at	* 20°C

Q

Application and Construction Instructions

Maintaining a Constant Temperature Level at Thermal Encapsulation If you want to ensure a defined temperature level at the contact surface of the primary part of the thermal encapsulation motor version, you must use the formula acc. to fig. 9-50 "Coolant flow required for maintaining a constant temperature level at the motor contact surface in the case of thermal encapsulation" on page 126 to determine the coolant flow that is necessary for maintaining a maximum coolant temperature rise. It is to be taken into account that only a part of the power loss remains to be removed via the thermal encapsulation. ΔT_m is the temperature at the contact surface of the primary part.

$$\mathbf{Q} = \frac{\mathbf{P}_{\infty} \cdot \mathbf{25200}}{\mathbf{c} \cdot \boldsymbol{\rho} \cdot \Delta \mathbf{T}_{m}}$$
Rated coolant flow in l/min


P _{co}	Removed power loss in W
С	Specific heat capacity of the coolant in J / kg · K
ρ	Density of the coolant in kg/m ³
ΔT_m	Temperature rise on contact surface in K
Fig.9-50:	Coolant flow required for maintaining a constant temperature level at the motor contact surface in the case of thermal encapsulation

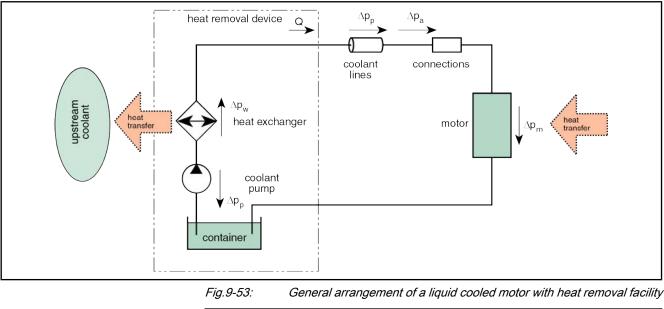
Prerequisites: $Q \ge Q_{min}$ (see chapter 4 "Technical Data")

Pressure Drop

The flow resistance at the pipe walls, curves, and changes of the cross-section produces a pressure drop along the traversed components (fig. 9-45 "Liquid-cooled component" on page 124).

The pressure drop Δp rises as the flow quantity rises (fig. 9-51 "Pressure drop vs. flow quantity; general representation" on page 126).

Fig.9-51: Pressure drop vs. flow quantity; general representation

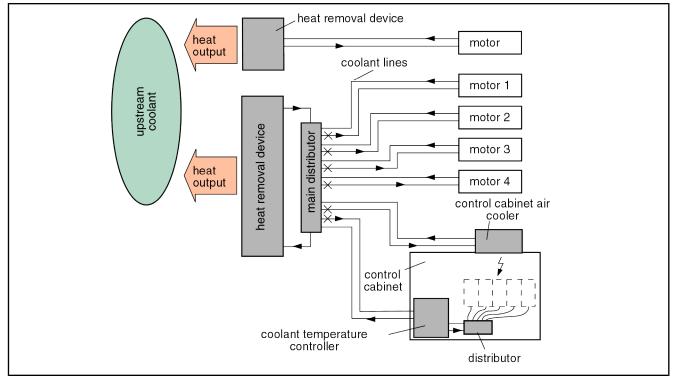

On the basis of the constant for determining the pressure drop k_{dp} that is explained in Chapter 4 "Technical Data", the pressure drop across the internal motor cooling circuit can be determined as follows:

Pressure Drop across the Motor Cooling System

	$\Delta \mathbf{p}_{\rm m} = \mathbf{k}_{\rm dp} \cdot \mathbf{Q}^{1.75}$
Δp _m	Pressure drop across the internal motor cooling circuit in bar
Q	Flow quantity in I/min
k _{dp}	Constant for determining the pressure drop (see Chapter 4 "Technical data")
Fig.9-52:	Determining the pressure drop vs. the flow quantity

Overall Pressure Drop

The pressure drop across the total system is determined by the sum of a series of partial pressure drop (fig. 9-53 "General arrangement of a liquid cooled motor with heat removal facility" on page 127). Usually, the pressure drop across the internal motor cooling system is relatively small.


R

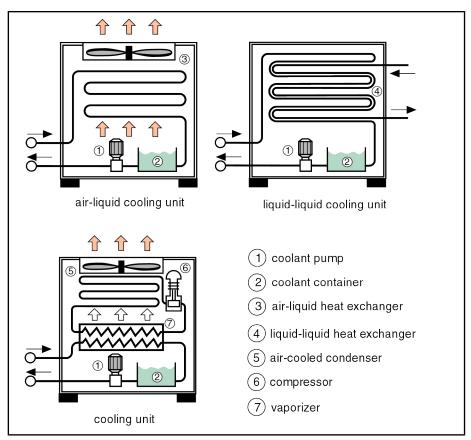
The overall pressure drop of the cooling system is determined by various partial pressure drops (motor, feeders, connectors, etc.). This must be taken into account when the cooling circuit is sized.

9.6.6 Liquid Cooling System

General Information

Machines and systems can require liquid cooling for one or more working components. If several liquid-cooled drive components exist, they are connected to the heat removal device via a distribution unit.

Fig.9-54: General arrangement of cooling systems with one and more drive components


Heat Removal Device

The heat removal device carries off the total heat that was fed into the liquid into a superordinate coolant. It provides a temperature-controlled coolant and thus maintains a required temperature level at the components that are to be cooled.

A heat removal device includes a heat exchanger, a coolant pump container and a coolant container.

There are three different types of heat removal devices. They are identified by the type of the heat exchanger between the different media:

- 1. Air-to liquid cooling unit
- 2. Liquid-to-liquid cooling unit
- 3. Cooling unit

Fig.9-55: Heat removal devices

	Air-to liquid cooling unit	Liquid-to-liquid cooling unit	Cooling unit	
Coolant temperature control accuracy	Low (±5 K)	Low (±5 K)	Good (±1 K)	
Superordinated coolant circuit required	No	Yes	No	
Heating of ambient air	Yes	No	Yes	
Power loss recovery	No	Yes	No	
Size of the cooling unit	Small	Small	Large	
Dependent of ambient tem- perature	Yes	No	No	
Environment-damaging cool- ant	No	No	Yes	
Notes on utilization criteria	Particularly suitable for stand- alone machines that do not have a superordinated cool- ant circuit available and do not have to fulfill high require- ments on the stability of the coolant temperature.	This cooling type is particular- ly suitable for systems with ex- isting central feedback cooler. It does fulfill high require- ments on the stability of the coolant temperature.	Particularly suitable for high requirements on the thermal stability (high-precision appli- cations, for example).	

Fig.9-56: Overview of the heat removal devices according to utilization criteria

Coolant Duct

	The coolant lines are a major part of the cooling system. They have a great influence on the system's operational safety and pressure drop. The lines can be made up as hoses or pipes.
Laying Flexible Coolant Lines with- in the Energy Chain	The coolant lines of linear motor drives with moved primary parts must be laid within a flexible energy chain.
	The continuous bending strain of the coolant lines must always be taken into account when they are sized and selected.

Further optional components

- Distributions
- Coolant temperature controller
- Flow indicator

r

A message is output when the flow drops below a selectable minimum flow quantity.

Level monitor

Chiefly minimum-maximum level monitor to check the coolant level in the coolant container

- Overflow valve
- Safety valve

Opens a connection between the coolant inlet and tank when a certain pressure is reached

- Coolant filter (100 μm)
- Coolant heating

To provide coolant of a correct temperature, in particular for coolant temperature control

Restrictor and shut-off valves

Circuit types

The two possible ways of connecting hydraulic components (series/parallel connection) show significant differences with respect to:

- Pressure drop of the entire cooling system
- Capacity of the coolant pump
- Temperature level and controllability of the individual components that are to be cooled

Parallel connection

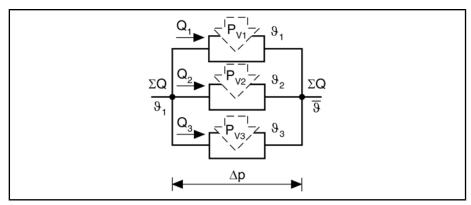


Fig.9-57: Parallel connection of liquid-cooled drive components

The parallel connection is characterized by nodes in the hydraulic system. The sum of the coolant streams flowing into a node is equal to the sum of the coolant streams flowing out of this node. Between two nodes, the pressure difference (pressure drop) is the same for all intermediate cooling system branches.

$$\mathbf{Q} = \mathbf{Q}_1 + \mathbf{Q}_2 \quad \dots + \mathbf{Q}_n$$
$$\Delta \mathbf{p} = \Delta \mathbf{p}_1 = \Delta \mathbf{p}_2 = \Delta \mathbf{p}_n$$

Δp Pressure drop Q

Flow quantity

Fig.9-58: Pressure drop and flow quantity in the parallel connection of hydraulic components

When several working components are cooled, a parallel connection is advantageous for the following reasons:

- The individual components that are to be cooled can be cooled at the individual required flow quantity. This means a high thermal operational reliability.
- Same temperature level at the coolant entry of all components (equal machine heating) (uniformly machine heating)
- Same pressure difference between coolant entry and outlet of all components (no high overall pressure required)

Series connection

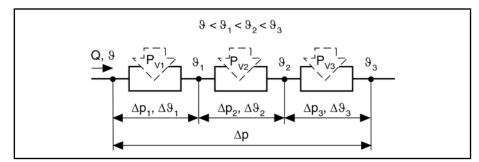


Fig.9-59: Series connection of liquid-cooled drive components

In series connection, the same coolant stream flows through all components that are to be cooled. Each component has a pressure drop between coolant inlet and coolant outlet. The individual pressure drops add up to the overall pressure drop of the drive components.

Series connection does not permit any individual selection of the flow quantity required for the individual components to be made. It is only expedient if the

individual components that are to be cooled need approximately the same flow quantity and bring about only a small pressure drop or if they are installed very far away from the heat removal device.

$$\mathbf{Q} = \mathbf{Q}_1 = \mathbf{Q}_2 = \mathbf{Q}_n$$
$$\Delta \mathbf{p} = \Delta \mathbf{p}_1 + \Delta \mathbf{p}_2 \quad \dots \quad + \Delta \mathbf{p}_n$$

Δp Pressure drop

Q Flow quantity

Fig.9-60: Pressure drop and flow quantity in the parallel connection of hydraulic components

The following disadvantages of series connection must always be taken into account:

- The required system pressure corresponds to the sum of all pressure drops of the individual components. This means a reduced hydraulic operational safety due to a high system pressure.
- The temperature level of the coolant rises from one component to the next. Each power loss contribution to the coolant rises its temperature (inhomogeneous machine heating)
- Some components may not be cooled as required since the flow quantity cannot be selected individually.

Combination of Series and Parallel Connection

Combining series and parallel connections of the drive components that are to be cooled permits the benefits of both connection types to be used.

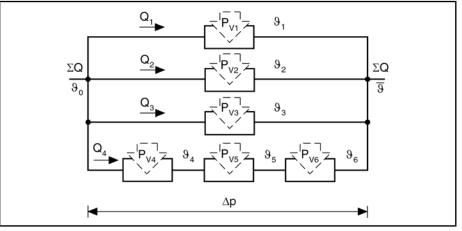
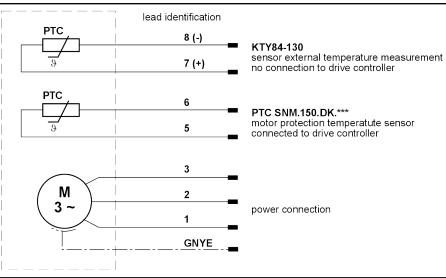



Fig.9-61: Combination of series and parallel connection

9.7 Motor Temperature Monitoring

In their standard configuration, primary parts of IndraDyn L motors are equipped with built-in motor protection temperature sensors. Every motor phase contains of one out of three switched in a row ceramic PTC's, so that a sure thermical control of the motor in every operation phase is possible. These thermistors (furthermore: thermistor motor protection) have a switching character (fig. 9-65 "Characteristik of temperature sensors motor protection (PTC)" on page 134) and become evaluated on all Bosch Rexroth control devices.

Furthermore all primary parts are fitted with an additional thermistor for external temperature measurement. These sensors (furthermore: sensor temperature

measurement) has nearly a linear characteristic curve (fig. 9-66 "Characteristic of temperature measurement sensor KTY84-130 (PTC)" on page 134).

Temperature Sensor Motor Protec-

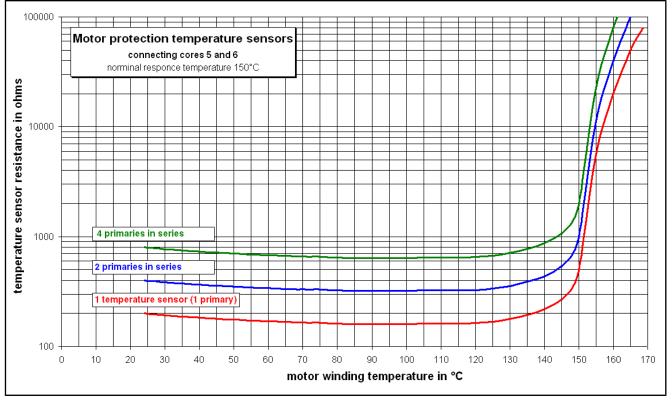
Fig.9-62: Arrangement of temperature sensors at IndraDyn L motors

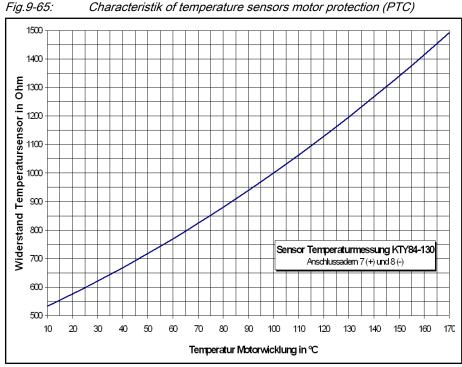
Туре	PTC SNM.150.DK.***
Nominal operating temperature ϑ_{NAT}	150 °C
Resistor at 25 °C	≈ 100 250 Ohm

Fig.9-63: Temperature sensor motor protection

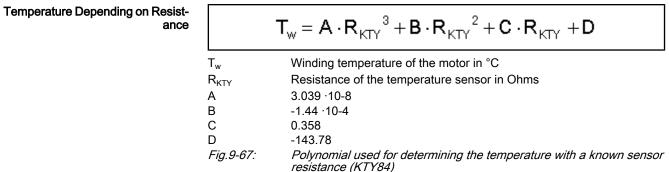
tion

R


For the parallel arrangement of two or more primary parts, the motor protection temperature sensors of all primary parts are connected in series. For further details, please see Chapter 8 "Electrical Connection".


Sensors Temperature Measurement External

KTY84-130
577 Ohm
1,000 Ohm
2 mA
_


⊢ıg.9-64: Sensor temperature measurement

R Notice the correct polarity when using the sensor for temperature measurement external (fig. 9-62 "Arrangement of temperature sensors at IndraDyn L motors" on page 133).

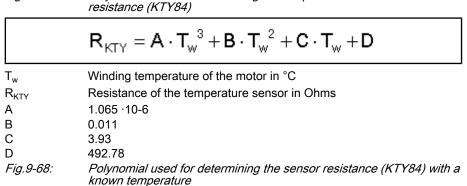
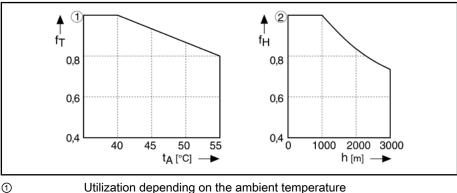


Fig.9-66: Characteristic of temperature measurement sensor KTY84-130 (PTC) A polynomial of degree 3 is sufficient for describing the resistance characteristic of the sensor used for temperature measurement (KTY84-130). In the following, this is specified for determining a temperature from a given resistance and viceversa.

Resistance Depending on Temperature



9.8 Setup Elevation and Ambient Conditions

The performance data specified for the motors apply under the following conditions:

- Ambient temperatures +0 ... +40 °C
- Setup elevation of 0 m to 1,000 m above sea level.

Different conditions lead to a departing of the data according to the following diagrams. Do occur deviating ambient temperatures and higher setup elevations at the same time, both utilization factors must be multiplied.

- Utilization depending on the ambient temperation
 Utilization depending on the setup elevation
- f_T Temperature utilization factor
- t_A Ambient temperature in degrees Celsius
- f_H Height utilization factor
- h Setup elevation in meters

Fig.9-69: IndraDyn L utilization factors

If either the ambient temperature or the setup height exceeds the nominal data:

- 1. Multiply the motor data provided in the selection data with the calculated utilization factor.
- 2. Ensure that the reduced torque data are not exceeded by your application.

If **both** the ambient temperature **and** the site altitude exceed the nominal data:

- 1. Multiply the load factors f_T and f_H determined.
- 2. Multiply the value obtained by the motor data specified in the selection data.

Ensure that your application does not exceed the reduced motor data.

The details for the utilization against the setup elevation and environmental temperature do not apply to the defined liquid coolant on the motor, but on the whole drive system, consisting of motor, drive controller and mains supply.

9.9 Protection Class

The design of the IndraDyn L synchronous linear motors complies with the following degrees of protection according to DIN VDE 0470, Part 1, ed. 11/1992 (EN 60 529):

Motor components	Degree of protection
Primary part with standard encapsulation	
Primary part with thermo encapsulation	IP 65
Secondary part	

Fig.9-70: Protection class of IndraDyn L motors

The type of protection is defined by the identification symbol IP (International Protection) and two reference numbers specifying the degree of protection.

The **first digit** defines the degree of protection against contact and penetration of foreign particles. The **second digit** defines the degree of protection against water.

1st digit	Degree of protection
6	Protection against penetration of dust (dust-proof); complete contact protection
2nd digit	Degree of protection
5	Protection against a water jet from a nozzle directed against the housing from all directions (jet water)

Fig.9-71: IP degrees of protection

The tests for the second code number are done with fresh water. If cleaning is effected using high pressure and/or solvents, coolants, or penetrating oils, it might be necessary to select a higher degree of protection.

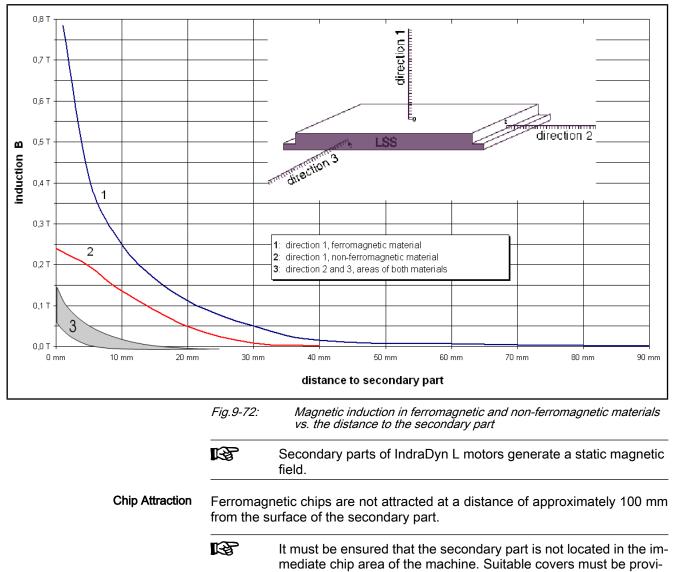
Personal injuries, damaging or destroying motor components!

 $\Rightarrow~$ Use IndraDyn L synchronous linear motors only in environments for which the specified class of protection proves sufficient.

9.10 Compatibility Test

All Rexroth controls and drives are developed and tested according to the latest state-of-the-art of technology.

As it is impossible to follow the continuing development of all materials (e. g. lubricants in machine tools) which may interact with our controls and drives, it cannot be completely ruled out that any reactions with the materials used by Bosch Rexroth might occur.


For this reason, before using the respective material a compatibility test has to be carried out for new lubricants, cleaning agents etc. and our housings / our housing materials.

9.11 Magnetic Fields

The secondary parts of synchronous linear motors are equipped with permanent magnets, which are not magnetic shielded.

To be able to assess EMC problems (e.g. the influence on inductive switches or inductive measuring systems), chip attraction, and for personal protection, the values of the magnetic induction as a function of the distance to the secondary part are specified below.

The representation distinguishes between ferromagnetic materials (e.g. steel) and non-ferromagnetic materials (e.g. air), and between different directions.

ded.

9.12 Vibration and Shock

According to IEC 721-3-3 edition 1987 or EN 60721-3-3 edition 06/1994, IndraDyn L motors are approved for the utilization in areas that are exposed to vibration and/or shock as given in fig. 9-73 "Limit data for sinusoidal vibrations" on page 138 and fig. 9-74 "Limits for shock load" on page 138 IndraDyn L motors may be used in stationary weather-proof operation corresponding to class 3M5

Influencing quantity	Unit	Maximum value
Amplitude of the excursion at 2 to 9 Hz	mm	0,3
Amplitude of the acceleration at 9 to 200 Hz	m/s²	1

Fig.9-73: Limit data for sinusoidal vibrations

Unit	Maximum value
	Туре II
m/s²	250
ms	6
	m/s²

Fig.9-74: Limits for shock load

Motor damage and loss of warranty!

 \Rightarrow A motor, used outside of specified operating conditions can be damaged. In addition, any warranty claim will expire.

 \Rightarrow Ensure that the maximum values specified in fig. 9-73 "Limit data for sinusoidal vibrations" on page 138 and fig. 9-74 "Limits for shock load" on page 138 for storage, transport, and operation of the motors are not exceeded.

9.13 Housing Surface

The following table shows the condition of the enclosure surface when delivered.

Motor component	Housing surface	Note
Standard encapsulation pri- mary part	Stainless steel V4A with black printing (RAL 9005)	Varnish resistant to weather, yellowing, chalking, thinned acids and thinned lyes
Thermal encapsulation primary part	Stainless steel V4A, front end aluminum, blank	
Secondary part segments	Cover plate stainless steel V4A, magnetic base carrier C45, chromatic	

Fig.9-75: Layout of enclosure surface

R ²	It is possible to provide the surface of the motor components with
	additional varnish with a coat thickness no more than 40 µm. Check
	the adhesion and resistance of the paint coat before applying it.

9.14 Noise Emission

The noise emission of synchronous linear drives can be compared with conventional inverter-operated feed drives.

Experience has shown that the noise generation chiefly depends on

- the employed linear guides (velocity-related travel noise),
- the mechanical design (following cover, etc.), and
- the settings of drive and controller (e.g. switching frequency)

A generally valid specification is therefore not possible.

9.15 Length Measuring System

R

9.15.1 General Information

A linear scale is required for measuring the position and the velocity. Particularly high requirements are placed upon the linear scale and its mechanical connection. The linear scale serves for high-resolution position sensing and to determine the current speed.

The necessary length measuring system is not in the scope of delivery of Bosch Rexroth and has to be provided and mounted from the machine manufacturer himself (fig. 9-81 "Recommended linear scales for linear motors" on page 143).

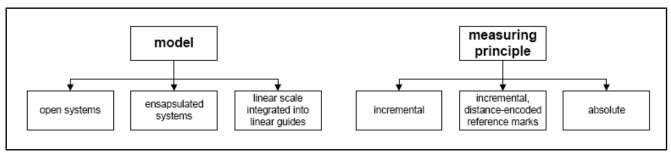


Fig.9-76: Classification of linear scales

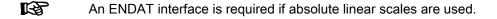
Particularities of Synchronous Linear Motors It is necessary at synchronous linear motors to receive the position of the primary part relating on the secondary part by return after start or after a malfunction (pole position recognition). Using an absolute linear scale is the optimum solution here.

9.15.2 Selection Criterias for Length Measuring System

General Information

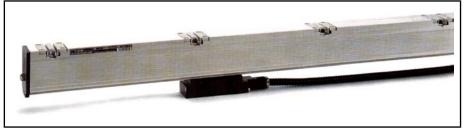
Depending on the operating conditions, open or encapsulated linear scales with different measuring principles and signal periods can be used. The selection of a suitable linear scales mainly depends on:

- the maximum feed rate (model, signal period)
- the maximum travel (measuring length, model)
- if applicable, utilization of coolant lubricants (model)
- produced dirt, chips etc. (model)
- the accuracy requirements (signal period)


Frame Sizes

Open model	Encapsulated model	Measuring system, integrated in rail guides			
Advantages:					
- High traverse rates	- Easy installation	- Combined guidance and measurement			
- High accuracy	- High protection class	- No additional installation required			
- No friction	- Incremental and absolute measurement	- Highest protection class			
	available	- High traverse rates			
		- Little space required			
Disadvantage:					
- Low protection class	- Maximum velocity	- No absolute measurement systems			
- More complicated mounting and ad- justment	currently 120m/min	available			
 Currently no absolute measurement systems available 					
	Fig.9-77: Advantages and disadvantag	ges of different linear scales models			
Open Model	If there are no dirt, chips, etc. in a machine will never be used, employing an open lin linear scale are frequently used for har machines, and in the semiconductor ind	ear scale is recommended. Thus oper ndling axes, precision and measuring			
Encapsulated Model	odel Encapsulated systems should be employed if chips are produced and ant lubricants are used. To achieve highest operational reliability, and lated system can have additional sealing air. Encapsulated linear so chiefly used at chip-producing machine tools.				
Measuring System, integrated in Rail Guides	he ball and roller rail guides from Rexroth are available with an integrated iductive linear scales. The system consists of a separate scanner (read head) nd a material measure that is integrated into the rail. The material measure is ccommodated in a groove of the guide rail, and is protected by a tightly welded tainless steel type. The read head is attached directly to the guide carriage.				
	The system is insensitive against soiling magnetic fields. Due to the little space re- (measuring system and guides) permits a externally attached measuring system. The stallation of external systems.	quired, the compact and robust device simplified structures compared with an			
Measuring Principle					
Absolute Scales	he advantages of an absolute linear scale result from the fact that a high vailability and operational reliability of the axis of motion and, consequently, the entire system is guaranteed.				
	Advantage:				
	 Monitoring and diagnosis functions sible without any additional wiring 	 Monitoring and diagnosis functions of the electronic drive system are pos sible without any additional wiring 			
	No axis travel limit switches required				
	• The maximum available motor force immediately after power-up.	e is available at any point of the trave			
	No referencing required				
	• Easy commissioning of horizontal a	and vertical axes			

- Easy commissioning of horizontal and vertical axes
- pole position recognition only required for initial commissioning


Disadvantage:

- Maximum measuring length is limited (3040mm)
- Only encapsulated systems available

Using an absolute linear scales makes it possible that the pole position recognition of the motor need only be performed once for initial commissioning. This drive-internal procedure is possible without activating the power. This provides advantages when commissioning vertical axes, in particular.

Rexroth recommends the absolute linear scale LS181 and LC481 from Heidenhain. Both systems are equipped with an ENDAT interface.

Incremental Scales W

Fig.9-78: Absolute encapsulated length measuring system LC181

When an incremental linear scale is used together with a synchronous linear motor, the pole position must be measured upon each power-up. This is done, using a drive-internal procedure that must be executed whenever the axis is switched on. After this, a force processing of the motor is possible.

With incremental linear scales, the drive-internal pole position recognition procedure must be executed upon each power-up. Pole position recognition required the primary part to be moved!

Advantage:

- Depending on the model, travels up to 30 m (or unlimited distance) possible
- High feed rate possible
- Different signal periods and, consequently, different position resolutions possible.

Disadvantage:

- Pole position must be measured upon each power-up.
- Pole position recognition required the primary part to be moved
- Pole position recognition is not possible for vertical axes
- Pole position recognition is not possible for securely braked axes or for axes at the hard stop
- Pole position recognition of Gantry axes may cause problems
- Reference point interpretation and homing switch are required
- Safety limit switch is required

Incremental Linear Scales with distance-encoded Reference Marks Incremental linear scales with distance-encoded reference marks offer the benefit of a simplified and, even more important, shortened referencing. With such a system, referencing requires the axis merely to be moved by several centimeters (depends on the model).

R

Distance-encoded scales do not perform absolute measurement. Pole position recognition must also be performed upon each powerup (like incremental systems that are not distance encoded).

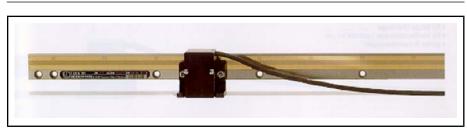


Fig.9-79: Open incremental linear scales LIDA185C with distance-encoded reference marks

Maximum Permitted Velocity and Acceleration

Maximum permissible feed rate

One limitation factor of the maximum permissible feed rate of a length measuring system are the sealing lips and the guides of the scan carriage on the glass rule. Currently, the velocity of an encapsulated system is limited to 120 m/min.

The other limitation factor of the maximum permissible feed rate is the frequency limit of the output signals (manufacturer's specifications) or the maximum permissible input frequency of subsequent circuits (drive controller).

$$v_{max} = f_{max} \cdot Signal period \cdot 60$$

 vmax
 Maximum feed rate in m/min

 Signal period
 Signal period of linear scale in mm

 fmax
 Maximum input frequency of scale interface (DAG 1 VSS: 500kHz) (DLF 1 VSS: 500kHz)

 Fig.9-80:
 Maximum traverse rate of linear scale related to the maximum input frequency of the scale interface

Maximum Permissible Acceleration in the Measuring Direction The very rigid internal structure of open linear scales permits maximum acceleration values in the measuring direction of up to 200 m/s². To permit relatively high attachment tolerances, the scan carriage of encapsulated linear scales cannot rigidly be connected with the mounting foot. Encapsulated linear scales systems for linear motors, however, are comparatively rigid and may be used for maximum accelerations in the measuring direction between 50 m/s² and 100 m/s² (depending on the length measuring system employed).

Please refer to the documents from the corresponding manufacturer for detailed and updated information.

Position Resolution and Position Accuracy

To reach a high resolution of the linear scale, an interpolation of the sinusoidal input signal of the linear scale is performed in the drive controller. Depending on the maximum travel range and on the signal period, a drive-internal position resolution of less than 1 mm is possible.

The drive-internal position resolution does not correspond to the positioning accuracy! The absolute positioning accuracy is depending on the entire drive system, including mechanical systems.

Measuring System Cables

Ready-made cables of Rexroth are available for the electrical connection between the output of the linear scale and the input of the scale interface. To ensure maximum transmission and scale interference safety, you should preferably use these ready-made cables.

Recommended linear scales for linear motors

Manufacturer Type	Signal period in mm (S-0-0116)	Model	Output sig- nals	Measuring principle	Maximum measuring length in mm	Maximum ve- locity in m/ min	P-0-0074	Reference marks
Heidenhain LC 181	0.016	Encapsula- ted	Sinus 1Vss	Absolute ENDAT	3,040	120	8	none (Absolute)
Heidenhain LC 481	0.02	Encapsula- ted	Sinus 1Vss	Absolute ENDAT	2,040	120	8	none (Absolute)
Heidenhain LS 486	0.02	Encapsula- ted	Sinus 1Vss	Incremental	2,040	120	2	one (Middle measuring length)
Heidenhain LS 486C	0.02	Encapsula- ted	Sinus 1Vss	Incremental	2,040	120	2	Distance-co- ded
Heidenhain LS 186	0.02	Encapsula- ted	Sinus 1Vss	Incremental	3,040	120	2	one (Middle measuring length)
Heidenhain LS 186C	0.02	Encapsula- ted	Sinus 1Vss	Incremental	3,040	120	2	Distance-co- ded
Heidenhain LB 382	0.04	Encapsula- ted	Sinus 1Vss	Incremental	30,040	120	2	Selectable by blinds
Heidenhain LB 382C	0.04	Encapsula- ted	Sinus 1Vss	Incremental	30,040	120	2	Distance-co- ded
Heidenhain LF 183	0.004	Encapsula- ted	Sinus 1Vss	Incremental	3,040	60	2	Selectable by magnets
Heidenhain LF 183C	0.004	Encapsula- ted	Sinus 1Vss	Incremental	3,040	60	2	Distance-co- ded
Heidenhain LF 481	0.004	Encapsula- ted	Sinus 1Vss	Incremental	1,220	60	2	one (Middle measuring length)
Heidenhain LF 481C	0.004	Encapsula- ted	Sinus 1Vss	Incremental	1,220	60	2	Distance-co- ded
Heidenhain LIDA 185	0.04	Open	Sinus 1Vss	Incremental	30,040	480	2	Selectable by magnets
Heidenhain LIDA 185C	0.04	Open	Sinus 1Vss	Incremental	30,040	480	2	Distance-co- ded
Heidenhain LIDA 187	0.04	Open	Sinus 1Vss	Incremental	6,040	480	2	Selectable by magnets
Heidenhain LIDA 187C	0.04	Open	Sinus 1Vss	Incremental	6,040	480	2	Distance-co- ded
Renishaw RGH22	0.02	Open	Sinus 1Vss	Incremental	50,000	500	2	Selectable by magnets

Manufacturer Tvpe	Signal period in mm (S-0-0116)	Model	Output sig- nals	Measuring principle	Maximum measuring length in mm	Maximum ve- locity in m/ min	P-0-0074	Reference marks
Renishaw RGH24	0.02	Open	Sinus 1Vss	Incremental	50,000	500	2	Selectable by magnets
Renishaw RGH25	0.02	Open	Sinus 1Vss	Incremental	50,000	500	2	Selectable by magnets
Renishaw RGH41	0.04	Open	Sinus 1Vss	Incremental	50,000	640	2	Selectable by magnets
Heidenhain LIF 181R	0.004	Open	Sinus 1Vss	Incremental	3,040	120	2	one (Middle measuring length)
Heidenhain LIF 181C	0.004	Open	Sinus 1Vss	Incremental	3,040	120	2	Distance-co- ded
Heidenhain LIP 481R	0.002	Open	Sinus 1Vss	Incremental	420	60	2	one (Middle measuring length)
Rexroth inte- grated meas- uring system	1.000	integrated in- to slide mounting	Sinus 1Vss	Incremental	4,000	600	2	Single refer- ence or Distance-co- ded
		S-	D-0116 I	Drive paramete Drive paramete <i>Recommende</i>	er "Encoder 1		ors	
		Ľ	§ •			nterference in rface with 1 \		exroth recom-

• Please refer to the documents from the corresponding manufacturer for detailed and possibly updated information.

9.15.3 Mounting the Length Measuring Systems

Elasticity of the Coupling to the Ma-With linear drives, the mounting of the measuring system to the machine can chine limit the bandwidth of the position control loop. As a consequence for the design, this means that the coupling between the scan unit and the rule of an open linear scale, or between the rule enclosure of an encapsulated linear scale, and the machine - with respect to the natural frequency - must be significantly higher than the one of the linear scale. The natural frequencies of today's encapsulated linear scales are 2 kHz and higher. It must also be ensured that the linear scales is not attached to vibrating machine components. In particular, attaching the system in the vicinity of vibration maximal must be avoided. **Mounting Method** In order to minimize the moved masses and to obtain the highest rigidity in the measuring direction, the scanner unit should always be moved if possible. **Open Linear Scales Systems** The user should provide an encapsulation if an open linear scale is employed despite adverse conditions (chips, dust, etc.). It must also be noted that the scanning head must be adjusted when the open linear scale is installed. Corresponding adjustment possibilities must be provided in the design (please heed the specifications of the manufacturer).

Encapsulated Linear Scales Systems To obtain relatively high installation tolerances, the scan carriage of encapsulated linear scale is connected with the mounting base via coupling that is very rigid in the measuring direction and slightly flexible perpendicularly to the measuring direction. If the rigidity of this coupling in the measuring direction is too weak, there are low natural frequencies in the feedback of the position and velocity control loop that can limit the bandwidth. The encapsulated linear scales that are recommended for linear motors usually possess a natural frequency in the measuring direction that is above 2 kHz. Thus, the natural frequency of the linear scale in the measuring direction can be neglected with respect to the mechanical natural frequencies of the machine.

Parallel Arrangement of Motors
with one Linear Scale SystemIf several motors on an axis are used with a single linear scale, the motors
should be positioned as symmetrically as possible.

Gantry axes With a Gantry axis, where each motor of pair of motors is assigned to a linear scale system, the distance between motor and linear scale should be as small as possible. The accuracy of the linear scale as such and with respect to each other should be less than 5 μm/m. Drive-internal axis error compensations can minimize remaining misalignments between the linear scales.

9.16 Linear Guides

Depending on the motor arrangement, the attractive, feed and process forces and the velocities of more than 600 m/min that can be reached today stress the linear guides. The employed linear guides must the able to handle

- Attractive force between primary and secondary part and
- Machining and acceleration forces

Depending on the application, the following linear guides are employed:

- Ball or roll rail guides
- Slideways
- Hydrostatic guides
- Aerostatic guides

The following requirements should be taken into account when a suitable linear guide system is selected:

- High accuracy and no backlash
- Low friction and no stick-slip effect
- High rigidity
- Steady run, even at high velocities
- Easy mounting and adjustment

9.17 Braking Systems and Holding Devices

The following systems can be used as braking systems and/or holding devices for linear motors:

- External braking devices
- Clamping elements for linear guides
- Holding brakes integrated in the weight compensation

See also chapter 15.1 "Recommended Suppliers of Additional Components" on page 247.

Further designs about stand-still of linear motors are given in chapter 9.18 "End Position Shock Absorber " on page 146 and chapter 9.22 "Deactivation upon EMERGENCY STOPand in the Event of a Malfunction " on page 149 as well as in the appropriate functional description of the drive controller.

9.18 End Position Shock Absorber

Where linear drives with frequently high traverse rates and accelerations are concerned, uncontrolled movements (such as coasting after a mains failure) cannot be definitely avoided.

Suitable energy-absorbing end position shock absorber must be provided in order to protect the machine during uncontrolled coasting of an axis.

A	Damage on machine or motor components when driving against hard
	stop! ⇒ Use suitable energy-absorbing end position shock absorber
WARNING	 ⇒ Adhere to the specified maximum decelerations
	The necessary spring excursion of the shock absorbers must be taken into account when the end position shock absorber are integrated into the machine (in particular when the total travel path is determined).
Maximum Deceleration when Driv- ing against End Stop	Given by the type of fastening and by the type of the primary part (quantity of the fastening screws, attractive force, mass, etc.), there is a maximum deceleration in the movement onto an end stop. If this maximum deceleration is exceeded, this can lead to loosening the primary part and to damaging of motor components.
	The maximum permissible deceleration upon moving against end stop is 300 m/s².
	Using a suitable end stop shock absorber, the maximum permissible deceleration for moving against an end stop must be limited to 300 m/s² .
Braking Distance to be kept when Driving against End Stop	With the known maximum deceleration of 300 m/s ² and the maximum possible velocity, the minimum spring excursion can be calculated as follwos:
	$s_{\min} = \frac{v_{\max}^2}{2158}$
	s _{min} Minimum braking distance in mm
	v _{max} Maximum possible velocity in m/min
	<i>Fig.9-82:</i> Braking distance to be kept when driving against end stop

9.19 Axis Cover Systems

Depending on the application, design, operational principle and features of synchronous linear motors the following requirements on axis cover systems apply:

- High dynamic properties (no overshoot, little masses)
- Accuracy and smooth run

- Protection of motor components against chips, dust and contamination (in particular ferromagnetic parts),
- Resistance to oil and coolant lubricants
- Robustness and wear resistance
- The following axis cover systems can be used:
- Bellow covers
- Telescopic covers
- Roller covers

A suitable axis cover system should be configured, if possible, during the early development process of the machine or system – supportet by the corresponding specialized supplier (see chapter 15.1 "Recommended Suppliers of Additional Components" on page 247).

9.20 Wipers

	ondary p the air g	erally possible, to use a wiper for removing chips directly on the sec- art, if the measures to protect the motor installation space or to protect ap between primary and secondary part cannot be optimally imple- see chapter 9.3.4 "Protection of the Motor Installation Space" on page		
	swarf, et with a hi ondary p	cant disadvantage of this measure is, however, if magnet dirt (chips, c.) exists on the secondary part, this is difficult to remove and is afflicted gh rate of wear because of the powerful attractive forces of the secondart For this reason, the wiper and the motor components should be in short intervals onto wear or damage.		
		wing points must be taken into account when a suitable wiper system ed and used:		
Secondary Part Segments	If possible, a wiper should be used only on whole secondary part segments. If more than one secondary part segment is used, joints between the secondary part segment must be taken into account (destruction of the wiper or of the secondary parts). In these cases, a defined distance – smaller than the air gap among primary and secondary part – between wiper and secondary part or a wiper in the form of a hard brush can help.			
	R	Does the secondary part exists of several aligned secondary parts and can come residues, coolant lubricant, grease, etc. into the in- stallation space of the motor during operation, please note the following:		
		\Rightarrow The wiper wores with subject to technical reasons. Dirt, residues, etc. will not be reliably removed with increasing wear.		
		⇒ Check the pollution degree of the secondary part and the condi- tion of the wiper in regular and specified intervals . Hereby, remove already created residues onto the surface of the secondary part.		
Ferromagnetic Chips	mm. The	ondary part attracts ferromagnetic chips at a distance of approx. 100 ese attractive forces must be taken into account when ferromagnetic e removed.		
Femperature produced by Friction	seconda	ization of the wiper causes a significant rise of the temperature on the ry part surface, it must be ensured that this temperature does not ex- limit of 70 °C.		
Mounting the Wiper		er should be mounted to the superordinated machine construction. g the wiper in additional holes directly on the primary part is not per-		

٨	Damage or destruction of motor components by inappropriate utilization of a wiper on the secondary part!
WARNING	 If possible, utilization only on whole secondary part segments Take slightly height differences of the secondary part segments into ac-
	 Take temperature rises due to friction into account

- Observe possible surface damage due to friction.
- Mounting the wiper in additional holes directly on the primary part is not permitted

9.21 Drive and Control of IndraDyn L motors

9.21.1 General Information

The following figures shows a complete linear direct drive, consisting of a synchronous linear motor, length scale system, drive controller and superordinate control.

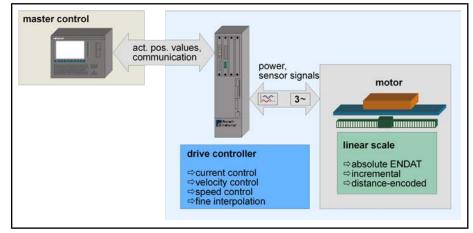


Fig.9-83: Linear direct drive

9.21.2 Drive Controller and Power Supply Modules

To control IndraDyn L motors, different digital drive controllers and power supply modules are available. These drive systems are configurable and of a modular or compact structure.

RF R	The drive controllers and the related firmware for the IndraDyn L
-	motors are the same as for the rotary drives from Bosch Rexroth.

9.21.3 Control Systems

A master control is required for generating defined movements. Depending on the functionality of the whole machine and the used control systems, Bosch Rexroth offers different control systems.

9.22 Deactivation upon EMERGENCY STOPand in the Event of a Malfunction

9.22.1 General Information

The deactivation of an axis, equipped with an IndraDyn L motor, can be initiated by

- EMERGENCY STOP,
- drive fault (e.g. response of the encoder monitoring function) or
- mains failure

For the options of deactivation an IndraDyn L motor in the event of a malfunction, distinction must be made between

- Deactivation by the drive,
- Deactivation by a master control and
- Deactivation by a mechanical braking device.

9.22.2 Deactivation by the Drive

As long as there is no fault or malfunction in the drive system, shutdown by the drive is possible. The shutdown possibilities depend on the occurred drive error and on the selected error response of the drive. Certain faults (interface faults or fatal faults) lead to a force disconnection of the drive.

	Death, serious injuries or damage to equipment may result from an un- controlled coasting of a switched-off linear drive!
	\Rightarrow Construction and design according to the safety standards
WARNING	⇒ Protection of people by suitable barriers and enclosures
	⇒ Use external mechanical braking facilities
	\Rightarrow Use suitable energy-absorbing end position shock absorber
	The parameter values of the drive response to interface faults and non-fatal faults can be selected. The drive switches off at the end of each fault response.
	The following fault responses can be selected:
	0 – Setting velocity command value to zero
	Setting force command value to zero
	Setting velocity command value to zero with command value ramp and filter
	3 - Retraction
	Please refer to the corresponding firmware function description for additional information about the reaction to faults and the related parameter value assignments.

9.22.3 Deactivation by a Master Control

Deactivation by control functions

Deactivation by the master control should be performed in the following steps:

- 1. The machine PLC or the machine I/O level reports the fault to the CNC control
- 2. The CNC control deactivate the drives via a ramp in the fastest possible way

3. The CNC control causes the power at the power supply module to be shut down.

Drive initiated by the control shutdown

Deactivation by the master control should be performed in the following steps:

- 1. The machine I/O level reports the fault to the CNC control and SPS
- 2. The CNC control or the PLC resets the controller enabling signal of the drives. If SERCOS interface is used, it deactivates the "E-STOP" input at the SERCOS interface module.
- 3. The drive responds with the selected error response.
- 4. The power at the power supply module must be switched off 500 ms after the controller enabling signal has been reset or the "E-STOP" input has been deactivated.

9.22.4 Deactivation via Mechanical Braking Device

Shutdown by mechanical braking devices should be activated simultaneously with switching off the power at the power supply module. Integration into the holding brake control of the drive controllers is possible, too. The following must be observed:

- Braking devices with electrical 24V DC control (electrically un-locking) and currents < 2 A can directly be triggered.
- Braking devices with electrical 24V DC control and currents > 2 A can be triggered via a suitable contractor.

Once the controller enabling signal has been removed, the holding brake control has the following effect:

• Fault reaction "0", "1" and "3".

The holding brake control drops to 0 V once the velocity is less than 10 mm/min or a time of 400 ms has elapsed.

Fault reaction "2":

The holding brake control drops to 0 V immediately after the drive enabling signal has been removed.

9.22.5 Response to a Mains Failure

In order to be able to shut down the linear drive as fast as possible in the event of a mains failure,

- either an uninterruptible power supply or
- additional DC bus capacities (condensers), and /or
- mechanical braking facilities

must be provided.

Determining the Required Additional DC Bus Capacitor Additional capacities in the DC bus represent an additional energy store that can supply the brake energy required in the event of a mains failure.

The control voltage must be available even at a power failure for the time of braking! If needed, buffer the control voltage supply or feed the control voltage from the DC intermediate circuit if possible!

The delayed power shutdown ensures the safe shutdown of the drive by the drive controller. With an undelayed power shutdown, the drive coasts in an uncontrolled way once the DC bus energy has been used up.

The additional capacity required for a deactivation upon a mains failure can be determined as follows:

$C_{add} = \overline{U_{f}}$	$\frac{\mathbf{m} \cdot \mathbf{v}_{\max}}{\mathbf{D}_{\text{DCmax}}^{2} - \mathbf{U}_{\text{DCmin}}^{2}} \cdot \left[3.5 \cdot \frac{\mathbf{F}_{\max}}{\mathbf{k}_{\text{iF}}^{2}} \cdot \mathbf{R}_{12} - \mathbf{v}_{\max} \cdot \left(\frac{\mathbf{F}_{\text{R}}}{\mathbf{F}_{\max}} + 0.3 \right) \right]$
C_{add}	Required additional DC bus capacitor in mF
m	Moved mass in kg
V _{max}	Maximum velocity in m/s
U _{DCmax}	Maximum DC bus voltage in V
U _{DCmin}	Minimum DC bus voltage in V
F _{max}	Maximum braking force of the motor in N
k _{iF}	Motor constant (force constant) in N/A
R ₁₂	Winding resistance at 20°C
F _R	Frictional force in N
Fig.9-84:	Determining the required additional DC bus capacitor

Prerequisites:

- Final velocity = 0
- Velocity-independent friction
- Constant deceleration
- Winding temperature 135 °C

R

The maximum possible DC bus capacity of the employed power supply module must be taken into account when additional capacities are used in the DC bus. Do not initiate a DC voltage short-circuit when additional capacitors are employed.

9.22.6 Short-Circuit of DC Bus

Most of the power supply modules of Bosch Rexroth permit the DC bus to be shortened when the power is switched off, which also establishes a short-circuit between the motor phases. When the motor moves, this causes a braking effect according to the principle of the induction; thereby the motor phases are shorted. The reachable braking force is not very high and velocity-dependend. The DC bus short-circuit can therefore only be used to support existing mechanical braking devices.

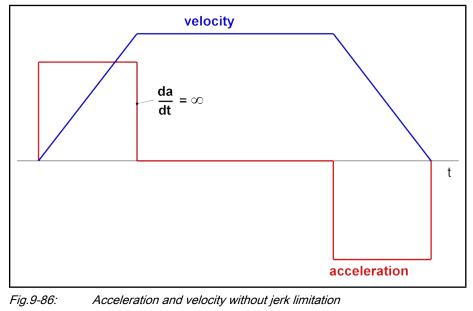
9.23 Maximum Acceleration Changes (Jerk Limitation)

Rate of current and force rise

The maximum rate of current and force rise is determined by the available DC bus voltage and the motor inductance. As shown in fig. 9-85 "Maximum rate of current and force rise" on page 152, with highly dynamic movements and short strokes, the motor inductance should be low and the DC bus voltage as high as possible.

152/259 Bosch Rexroth AG | Electric Drives and Controls

Application and Construction Instructions


$$\frac{di}{dt} = \frac{U_{DC}}{L_{12}}$$
$$\frac{dF}{dt} = \frac{U_{DC}}{L_{12}} \cdot k_{iF}$$

U_{DC} DC bus voltage in V

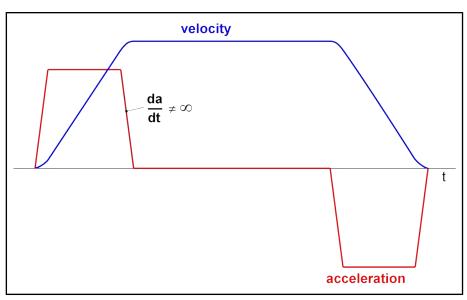

L ₁₂	Winding inductance in H
k _{iF}	Motor constant (force constant) in N/A
i	Current in A
t	Time in s

Fig.9-85: Maximum rate of current and force rise

The acceleration change per time unit (derivative of the acceleration) is known as jerk (fig. 9-88 "Maximum jerk (acceleration change)" on page 153).

The drive controller or the master control must delimit the maximum jerk when direct drives are employed (acceleration ramp with da/dt $\neq \infty$, fig. 9-87 "Acceleration and velocity with jerk limitation" on page 153).

Maximum Jerk

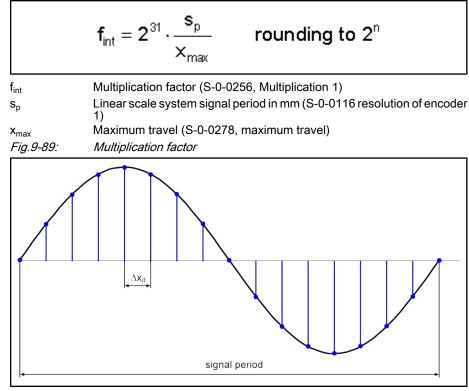
Fig.9-87: Acceleration and velocity with jerk limitation

The maximum jerk is determined by the maximum rate of current rise, by the moved mass and by the motor constant:

$$\mathbf{r}_{max} = rac{\mathbf{da}}{\mathbf{dt}} = rac{\mathbf{U}_{DC} \cdot \mathbf{k}_{iF}}{\mathbf{L}_{12} \cdot \mathbf{m}}$$

Moved mass in kg m U_{DC} DC bus voltage in V k_{iF} Motor constant (force constant) in N/A Winding inductance in H L_{12} Acceleration in m/s² а Time in s

Fig.9-88: Maximum jerk (acceleration change)


Position and Velocity Resolution 9.24

t

Drive Internal Position Resolution and Position Accuracy 9.24.1

In linear direct drives, a linear scale is used for measuring the position. The linear scale for linear motors supply sinusoidal output signals. The length of such a sine signal is known as the signal period. It is mainly specified in mm or μm.

With the drive controllers from Bosch Rexroth, the sine signals are amplified again in the drive (see fig. 9-90 "Drive-internal multiplication and/or interpolation of the measuring system signals" on page 154). The drive-internal amplification also depends on the maximum travel area and the signal period of the length measuring system. It always employs 2ⁿ vertices (e.g. 2048 or 4096).

Fig.9-90: Drive-internal multiplication and/or interpolation of the measuring system signals

With a known signal period and a drive-internal multiplication, the drive-internal position resolution results as:

$$\Delta \mathbf{x}_{d} = \frac{\mathbf{s}_{p}}{\mathbf{f}_{int}}$$
Drive-internal position resolution
Linear scale system signal period (S-0-0116 resolution of encoder 1)

spLinear scale system signal period (S-0-0116 resolution of encoder 1)fintMultiplication factor (S-0-0256, Multiplication 1)Fig.9-91:Drive-internal position resolution

The drive-internal position resolution is not identical to the reachable positioning accuracy.

Reachable Positioning Accuracy

 Δx_{d}

The reachable position accuracy depends on the mechanical and control-engineering total system and is not identical to the drive-internal position resolution.

The reachable position accuracy can be estimated as follows (using empirical values):

$$\Delta \mathbf{x}_{abs} = \Delta \mathbf{x}_{d} \cdot \mathbf{30...50}$$

Δx_d Drive-internal position resolution

Δx_{abs} Position accuracy

Fig.9-92: Estimating the reachable position accuracy

Prerequisites: Optimum controller setting

R

Application and Construction Instructions

The expected position accuracy cannot be better than the smallest position command increment of the superordinate control.

9.24.2 Velocity Resolution

The resolution of the velocity (velocity quantization) is proportional to the position resolution (see Fig. 9-88) and inversely proportional to the sample time t_{AD} from:

	$\Delta \mathbf{v}_{d} = \frac{\Delta \mathbf{x}_{d}}{\mathbf{t}_{AD}}$
Δv_d	Velocity resolution in m/s
Δx_{d}	Drive-internal position resolution
t _{AD}	Sample time in s (DIAX04: 250µs, ECODRIVE03: 500µs, IndraDrive: Standard Performance 250µs / High Performance 125µs)
Fig.9-93:	Velocity resolution

9.25 Load Rigidity

9.25.1 **General Information**

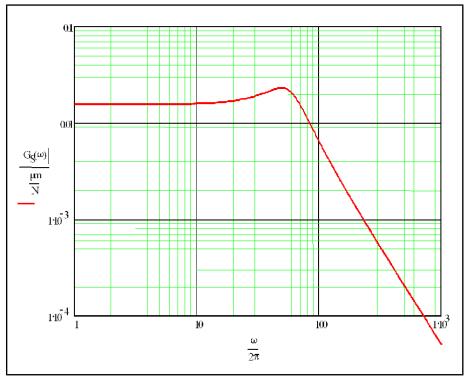
The elastic deformability resistance of a structure against an external force is known as rigidity (usually specified in N/µm). The reciprocal value of the rigidity is known as elasticity.

Influence of disturbing factors on a controlled electric drive is called load rigidity. It is distinguished between static and dynamic load rigidity.

9.25.2 Static Load Rigidity

The static load rigidity of a linear direct drive only depends on the maximum motor force and the drive-internal position resolution:

	$\mathbf{c}_{\text{stat}} = \frac{\mathbf{F}_{\text{max}}}{\Delta \mathbf{x}_{\text{D}}}$
c _{stat}	Static load rigidity in N/µm
F _{max}	Maximum force of the motor in N
Δx _D	Drive-internal position resolution in µm
<i>Fig.9-94:</i>	<i>Static load rigidity of linear direct drives</i>


R The rigidity of the machine structure must be taken into account when the static load rigidity of a linear direct drive is rated.

	$\mathbf{d}_{stat} = \frac{\Delta \mathbf{x}_{D}}{\mathbf{F}_{max}}$
d _{stat}	Static elasticity in N/µm
F _{max}	Maximum force of the motor in N
Δx_D	Drive-internal position resolution in µm
Fig.9-95:	Static elasticity of linear direct drives

9.25.3 Dynamic Load Rigidity

Dynamic load rigidity and elasticity are frequency-dependent variables. The dynamic load rigidity of a linear direct drive only depends on the controller settings (current, velocity and position controller) and on the moved masses (fig. 9-97 "Estimating the dynamic load rigidity" on page 157). The maximum elasticity (or the minimum rigidity) is in the area of the natural frequency of the control loop.

In a simplified form, the following figure shows a typical elasticity frequency response.

Estimating the Dynamic Load Rigidity *Fig.9-96: Example elasticity frequency response of a linear direct drive* Despite the frequency sensitivity, a sufficiently exact estimate of the dynamic rigidity can be made for the area below the natural frequency of the control loop:

	$\mathbf{c}_{dyn} = \frac{0.06 \cdot \mathbf{k}_{p} \cdot \mathbf{k}_{iF} \cdot (1 + 0.0167 \cdot \mathbf{k}_{v} \cdot \mathbf{T}_{n})}{\mathbf{T}_{n} \cdot \left(1 + \frac{\mathbf{e}^{-\mathbf{D} \cdot \frac{\pi}{\sqrt{1 - D^{2}}}}}{\sqrt{1 - D^{2}}}\right)}$ mit / with
	$D = \frac{1}{2} \cdot \sqrt{\frac{0.06 \cdot k_{p} \cdot k_{iF} \cdot T_{n}}{m \cdot (1 + 0.0167 \cdot k_{v} \cdot T_{n})}}$
c_{dyn} D k_{iF} k_p k_v T _n <i>m</i> <i>Fig.9-97:</i>	Dynamic load rigidity in N/µm Attenuation Motor constant (force constant) in N/A Proportional gain of velocity controller in A·min/m Proportional gain of position controller (Kv-factor) in m/min·mm Integral time of velocity controller in ms Moved mass in kg <i>Estimating the dynamic load rigidity</i>
	$\mathbf{d}_{dyn} = \frac{1}{\mathbf{c}_{dyn}}$
c _{dyn} d _{dyn} <i>Fig.9-98:</i>	Dynamic load rigidity in N/µm Dynamic elasticity in N/µm <i>Determining of the dynamic elasticity</i>
	$\omega_{0} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{1000 \cdot k_{p} \cdot k_{iF} \cdot (60 + k_{v} \cdot T_{n})}{m \cdot T_{n}}}$
	Natural frequency in Hz Motor constant (force constant) in N/A Proportional gain of velocity controller in A·min/m Proportional gain of position controller (Kv-factor) in m/min·mm Integral time of velocity controller in ms Moved mass in kg Determining the controller's natural frequency

10 Motor-Controller-Combinations

10.1 General Explanation

10.1.1 General Information

	This chapter contains selection data of different motor-control-combinations for the control-units							
	IndraDrive							
Structure of the Selection Data	The structuring of the selection data for synchronous-linear drives IndraDyn L depend on							
	control unit							
	Supply module / Rated connecting voltage							
	 Separate or parallel arrangement of the primary part 							
Sorting the Lists	The sort of the selection data depends on :							
	1. Motor type							
	2. Maximum feed force F _{MAX}							
	3. Maximum speed with maximum feedrate force v _{FMAX}							
Design Primary Part	For the standard and thermal encapsulation at same size obtain the same data. The specification of the motor-control-combination result concurrent for both constructions.							
	The specification of the data for motor-control-combination result concurrent for standard and thermal encapsulation.							
Parallel Motor Arrangement	Motor-control-combinations are also specified for parallel motor arrangement on a drive controller.							
	The specification of the data for parallel motor arrangement result for parallel arrangement on one drive controller. Dimensioning and selection for separate motors results from the Gantry-arrangement.							
PWM-Frequency Drive-Controller	The PWM-Frequency of the drive controller affects the resulting motor data. All data in this documentation refer to a PWM-Frequency of 4 kHz.							
10.1.2 Explanation of	of the Stated Sizes							
Maximum Feed Force	Maximum feed force F_{MAX} of the motor, available for maximum 499 ms (see fig. 4-1 "Example motor characteristic curve" on page 18).							
Maximum Velocity	Maximum velocity v_{FMAX} with maximum force F_{MAX} . Speed up to the maximum feedrate of the motor is available.							
Electrical Maximum Power Loss	Electrical maximum power loss P _{VMAX} of the motor, referring to the stated max- imum current at a motor winding temperature of 135 °C.							
Continuous Feed Force	Continuous feed force F_{dN} of the motor with regard to:							
	 Liquid cooling, coolant-water inlet temperature 30°C 							
	 Motor-winding temperature 135 °C. 							
	Motor stillstand							
Nominal Velocity	Nominal Velocity V _N							
	Force, which is available at a constant nominal force F_{dN} of the motor.							
Nominal Power Loss	Nominal power loss P_{vN} of the motor at F_{dN} .							

Relative Duty Cycle Duty ratio ED_{FMAX} in %, referring to the specified maximum and continuous force.

Short Time Operation Force The potential short-time operation force F_{KB} result from the rate between motor continuous nominal voltage and the continuous nominal voltage of the drive-controller and can be used in intermittent duty S6 with the duty ratio ED_{FKB}

The maximum duty cycle time complies with the thermal time constant of the motor.

$$ED_{F_{KB}} \approx \left(\frac{F_{dN}}{F_{KB}}\right)^2 \cdot 100\%$$

Potential short-time operation force in N

Fig. 10-1: Calculation of the potential operation time, relating on FKB

A short-time operation force higher than the continuous nominal force of the motor is only then available, if the continuous voltage of the drive-controller is higher than the continuous nominal voltage of the motor.

Continuous Nominal Voltage Maximum Current F_{KB}

The Continuous nominal current I_{dN} of the motor at continuous nominal force F_{dN} . Int Maximum current I_{max} of the motor at F_{MAX} .

The specification of the voltage results always from the effective values – as far as no others are specified.

10.2 Motor-Control-Combination; Separate Arrangement of the Primary Part

10.2.1 Controlled Constant DC Link, Rated Connecting Voltage 3 x AV 400 V

F _{MAX} [N]	v _{Fmax} [m/min]	P _{VMAX} [KW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation MLP	Control device													
800	300	6.8	250	500	0.33	5	346				HMS01.1N-W0020													
800	300	6.8	250	500	0.33	5	375		4.2 20		HMS01.1N-W0036													
505	407	2.3	161	533	0.14	6	161	4.2 20		4.2 20	040A-0300	HCS02.1E-W0012												
800	300	6.8	250	500	0.33	5	375					HCS02.1E-W0028												
800	300	6.8	250	500	0.33	5	375																	
1150	150	10.1	370	300	0.39	5	506	4.2 20	4.2 20	20		HMS01.1N-W0020												
1150	150	10.1	370	300	0.39	5	555					HMS01.1N-W0036												
732	231	3.3	238	326	0.2	6	238				20	040B-0150	HCS02.1E-W0012											
1150	150	10.1	370	300	0.49	5	555				HCS02.1E-W0028													
1150	150	10.1	370	300	0.49	5	555					HCS03.1E-W0070												
898	299	5.1	370	400	0.4	8	428				HMS01.1N-W0020													
1150	250	9.2	370	400	0.4	4	555				HMS01.1N-W0036													
1150	250	9.2	370	400	0.4	4	454	5.3	27	040B-0250	HCS02.1E-W0028													
1150	250	9.2	370	400	0.4	4	555				HCS02.1E-W0054													
1150	250	9.2	370	400	0.4	4	555				HCS03.1E-W0070													

										Primary part	
F _{MAX}	V _{Fmax}			v _N [m/	P _{vN}	ED _{FMAX}					
	[m/min]	[kW]	F _{dN} [N]	min]	[kW]	[%]	⊦ _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Standard - / Thermal encapsulation MLP	Control device
747	404	3.9	370	500	0.4	10	395		1		HMS01.1N-W0020
1150	300	11.9	370	500	0.4	3	555			040B-0350	HMS01.1N-W0036
969	347	7.8	370	500	0.4	5	404	6	35		HCS02.1E-W0028
1150	300	11.9	370	500	0.4	3	555				HCS02.1E-W0054
1150	300	11.9	370	500	0.4	3	555				HCS03.1E-W0070
1240	176	7	550	200	0.6	8	617				HMS01.1N-W0020
2000	150	22.7	550	200	0.6	3	825				HMS01.1N-W0036
2000	150	22.7	550	200	0.6	3	825	5.5	36	0704 0150	HMS01.1N-W0054
1633	163	14	550	200	0.6	4	634	5.5	30	070A-0150	HCS02.1E-W0028
2000	150	22.7	550	200	0.6	3	825				HCS02.1E-W0054
2000	150	22.7	550	200	0.6	3	825				HCS03.1E-W0150
1107	306	2.6	550	360	0.28	11	576				HMS01.1N-W0020
1756	244	8.3	550	360	0.28	3	817				HMS01.1N-W0036
2000	220	11.4	550	360	0.28	3	825	6.3	42	0704 0000	HMS01.1N-W0054
1443	274	5.1	550	360	0.28	6	590	0.3	42	070A-0220	HCS02.1E-W0028
2000	220	11.4	550	360	0.28	3	825				HCS02.1E-W0054
2000	220	11.4	550	360	0.28	3	825				HCS03.1E-W0070
1381	364	7.3	550	450	0.69	9	628				HMS01.1N-W0036
1968	304	16.5	550	450	0.69	4	825				HMS01.1N-W0054
2000	300	17.1	550	450	0.69	4	825				HMS01.1N-W0070
1130	390	4.5	383	468	0.33	7	383	10.5	55	070A-0300	HCS02.1E-W0028
1968	304	16.5	550	450	0.69	4	601				HCS02.1E-W0054
2000	300	17.1	550	450	0.69	4	825				HCS02.1E-W0070
2000	300	17.1	550	450	0.69	4	825				HCS03.1E-W0070
1967	136	11.8	820	200	1	8	932			28 070B-0100	HMS01.1N-W0020
2600	100	23.1	820	200	1	4	1230				HMS01.1N-W0036
2600	100	23.1	820	200	1	4	966	5.5	28		HCS02.1E-W0028
2600	100	23.1	820	200	1	4	1230				HCS02.1E-W0054
2600	100	23.1	820	200	1	4	1230				HCS03.1E-W0100
1519	181	7.2	820	220	0.67	9	876				HMS01.1N-W0020
2304	137	23.2	820	220	0.67	3	1168				HMS01.1N-W0036
2600	120	31.6	820	220	0.67	2	1230	5.8	42	070P 0120	HMS01.1N-W0054
1926	158	14.4	820	220	0.67	5	893	5.0	42	070B-0120	HCS02.1E-W0028
2600	120	31.6	820	220	0.67	2	1230				HCS02.1E-W0054
2600	120	31.6	820	220	0.67	2	1230				HCS03.1E-W0070
1407	224	4.8	820	260	0.51	11	850				HMS01.1N-W0020
2088	182	15.4	820	260	0.51	3	1103				HMS01.1N-W0036
2600	150	27.4	820	260	0.51	2	1230				HMS01.1N-W0054
1760	202	9.5	820	260	0.51	5	865	6.2	48	070B-0150	HCS02.1E-W0028
2600	150	27.4	820	260	0.51	2	1132				HCS02.1E-W0054
2600	150	27.4	820	260	0.51	2	1230				HCS02.1E-W0070
2600	150	27.4	820	260	0.51	2	1230				HCS03.1E-W0070
1848	314	7.6	820	400	0.65	9	935				HMS01.1N-W0036
2561	253	17.1	820	400	0.65	4	1230				HMS01.1N-W0054
2600	250	17.1	820	400	0.65	4	1230				HMS01.1N-W0070
1544	339	4.7	559	419	0.35	7	599	10	55	070B-0250	HCS02.1E-W0028
2004	300	17.1	820	400	0.65	4	901				HCS02.1E-W0054
2600	250	17.1	820	400	0.65	4	1181				HCS02.1E-W0070
2600	250	17.7	820	400	0.65	4	1230				HCS03.1E-W0070

FMAX [N] VFmax [m/min] PVMAX [kW] FdN [N] VN [m/ min] 1556 388 6.1 820 450 2109 342 13.7 820 450 2600 300 22.9 820 450 2600 300 32.5 820 450 1319 408 3.7 497 478 2109 342 13.7 820 450 2600 300 22.9 820 450 2600 300 22.9 820 450 2600 300 22.9 820 450 2600 300 22.9 820 450 2600 300 22.9 820 450 2600 300 22.9 820 450 2727 145 14.4 1200 180 3744 121 32.4 1200 180 2293 155 8.9 981 185 <th>P_{vN} [kW] 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75</th> <th>ED_{FMAX} [%] 12 6 3 3 7 6 3 3 3 3 3 7 3 3 3 3 3 3 3 3 3</th> <th>F_{KB} [N] 846 1230 1193 1230 497 820 886 1230 1230 1423</th> <th>I_{dN} [A]</th> <th>I_{MAX} [А] 70</th> <th>Primary part Standard - / Thermal encapsulation MLP 070B-0300</th> <th>HMS01.1N-W0036 HMS01.1N-W0054 HMS01.1N-W0070 HMS01.1N-W0110 HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070</th>	P _{vN} [kW] 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	ED _{FMAX} [%] 12 6 3 3 7 6 3 3 3 3 3 7 3 3 3 3 3 3 3 3 3	F_{KB} [N] 846 1230 1193 1230 497 820 886 1230 1230 1423	I _{dN} [A]	I_{MAX} [А] 70	Primary part Standard - / Thermal encapsulation MLP 070B-0300	HMS01.1N-W0036 HMS01.1N-W0054 HMS01.1N-W0070 HMS01.1N-W0110 HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070	
[N][m/min][kW]Immin]15563886.1820450210934213.7820450260030022.9820450260030032.582045013194083.7497478210934213.7820450260030022.9820450260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.4120018022931558.9981185374412132.41200180	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	12 6 3 3 7 6 3 3 3 3 7	846 1230 1193 1230 497 820 886 1230 1230			MLP	HMS01.1N-W0036 HMS01.1N-W0054 HMS01.1N-W0070 HMS01.1N-W0110 HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070	
210934213.7820450260030022.9820450260030032.582045013194083.7497478210934213.7820450260030022.9820450260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.4120018022931558.9981185374412132.41200180	0.75 0.75 0.28 0.75 0.75 0.75 0.75 0.75 0.98 0.98 0.98	6 3 7 6 3 3 3 7	1230 1193 1230 497 820 886 1230 1230	12	70		HMS01.1N-W0054 HMS01.1N-W0070 HMS01.1N-W0110 HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070	
210934213.7820450260030022.9820450260030032.582045013194083.7497478210934213.7820450260030022.9820450260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.4120018022931558.9981185374412132.41200180	0.75 0.75 0.28 0.75 0.75 0.75 0.75 0.75 0.98 0.98 0.98	6 3 7 6 3 3 3 7	1230 1193 1230 497 820 886 1230 1230	12	70	070B-0300	HMS01.1N-W0054 HMS01.1N-W0070 HMS01.1N-W0110 HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070	
260030022.9820450260030032.582045013194083.7497478210934213.7820450260030022.9820450260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.4120018022931558.9981185374412132.41200180	0.75 0.75 0.28 0.75 0.75 0.75 0.75 0.98 0.98 0.98	3 3 7 6 3 3 3 7	1193 1230 497 820 886 1230 1230	12	70	070B-0300	HMS01.1N-W0070 HMS01.1N-W0110 HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070	
260030032.582045013194083.7497478210934213.7820450260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.4120018022931558.9981185374412132.41200180	0.75 0.28 0.75 0.75 0.75 0.75 0.98 0.98 0.98	3 7 6 3 3 3 7	1230 497 820 886 1230 1230	12	70	070B-0300	HMS01.1N-W0110 HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070	
13194083.7497478210934213.7820450260030022.9820450260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.4120018022931558.9981185374412132.41200180	0.28 0.75 0.75 0.75 0.75 0.98 0.98 0.98	7 6 3 3 3 7	497 820 886 1230 1230	12	70	070B-0300	HCS02.1E-W0028 HCS02.1E-W0054 HCS02.1E-W0070	
210934213.7820450260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.41200180380012033.6120018022931558.9981185374412132.41200180	0.75 0.75 0.75 0.75 0.98 0.98 0.98	6 3 3 3 7	820 886 1230 1230	12	70	070B-0300	HCS02.1E-W0054 HCS02.1E-W0070	
260030022.9820450260030022.9820450260030022.9820450272714514.41200180374412132.41200180380012033.6120018022931558.9981185374412132.41200180	0.75 0.75 0.75 0.98 0.98 0.98	3 3 3 7	886 1230 1230				HCS02.1E-W0070	
260030022.9820450260030022.9820450272714514.41200180374412132.41200180380012033.6120018022931558.9981185374412132.41200180	0.75 0.75 0.98 0.98 0.98	3 3 7	1230 1230					
260030022.9820450272714514.41200180374412132.41200180380012033.6120018022931558.9981185374412132.41200180	0.75 0.98 0.98 0.98	3 7	1230					
272714514.41200180374412132.41200180380012033.6120018022931558.9981185374412132.41200180	0.98 0.98 0.98	7					HCS03.1E-W0070	
374412132.41200180380012033.6120018022931558.9981185374412132.41200180	0.98 0.98		1423				HCS03.1E-W0100	
380012033.6120018022931558.9981185374412132.41200180	0.98	3					HMS01.1N-W0036	
22931558.9981185374412132.41200180			1800				HMS01.1N-W0054	
3744 121 32.4 1200 180	0.66	3	1800				HMS01.1N-W0070	
		7	981	8.9	55	070C-0120	HCS02.1E-W0028	
	0.98	3	1375				HCS02.1E-W0054	
3800 120 33.6 1200 180	0.98	3	1375			-	HCS02.1E-W0070	
3800 120 33.6 1200 180	0.98	3	1800				HCS03.1E-W0070	
2284 208 10.4 1200 250	1.21	12	1254				HMS01.1N-W0036	
3088 178 23.3 1200 250	1.21	5	1800				HMS01.1N-W0054	
3800 150 39.2 1200 250	1.21	3	1758				HMS01.1N-W0070	
3800 150 39.2 1200 250	1.21	3	1800				HMS01.1N-W0110	
1941 222 6.4 749 268	0.47	7	749	11.7	70	070C-0150	HCS02.1E-W0028	
3088 178 22.3 1200 250	1.21	5	1216				HCS02.1E-W0054	
3800 150 39.2 1200 250	1.21	3	1312				HCS02.1E-W0070	
3800 150 39.2 1200 250	1.21	3	1800				HCS03.1E-W0070	
1976 317 5.1 1187 351	0.72	14	1187				HMS01.1N-W0036	
2585 292 11.4 1200 350	0.74	6	1642				HMS01.1N-W0054	
3124 269 19.1 1200 350	0.74	4	1577					
3800 240 31.6 1200 350	0.74	2	1800				HMS01.1N-W0110	
2585 292 11.4 1109 354	0.63	6	1109	13	90	070C-0240	HCS02.1E-W0054	
3161 268 19.5 1200 350	0.74	4	1231				HCS02.1E-W0070	
3124 269 19.1 1200 350	0.74	4	1800				HCS03.1E-W0070	
3800 240 31.6 1200 350	0.74	2	1800				HCS03.1E-W0100	
2200 393 8.5 1200 450	1.18	14	1402				HMS01.1N-W0054	
2657 366 14.3 1200 450	1.18	8	1347				HMS01.1N-W0070	
3800 300 35.4 1200 450	1.18	3	1786				HMS01.1N-W0110	
3800 300 35.4 1200 450	1.18	3	1800				HMS01.1N-W0150	
2200 393 8.5 758 476	0.47	6	758	19	110	070C-0300	HCS02.1E-W0054	
2679 365 14.7 879 469	0.63	4	879	10		0100 0000	HCS02.1E-W0070	
2657 366 14.3 1200 450	1.18	8	1673				HCS03.1E-W0070	
3513 317 29.2 1200 450	1.18	4	1800				HCS03.1E-W0100	
3800 300 35.4 1200 450	1.18	3	1800				HCS03.1E-W0100	
2280 124 9.5 1180 150	1.15	12	1209				HMS01.1N-W0020	
2280 124 9.5 1180 150 3588 94 30.8 1180 150	1.15	4	1695				HMS01.1N-W0020	
3750 90 34.3 1180 150	1.15	3	1770				HMS01.1N-W0054	
37.50 90 34.3 1180 150 2957 109 19 1180 150	1.15	6	1238	6.6	38	100A-0090	HCS02.1E-W0028	
2957 109 19 1180 150 3750 90 34.3 1180 150	1.15	3	1230				HCS02.1E-W0028	
3750 90 34.3 1180 150 3750 90 34.3 1180 150	1.15	3	1770				HCS02.1E-W0054 HCS03.1E-W0070	

										Primary part	
FMAX	V _{Fmax}	P _{VMAX}		v _N [m/	P _{vN}	ED _{FMAX}		1 741		Standard - / Thermal	
	[m/min]	[kW]	F _{dN} [N]	min]	[kW]	[%]	F _{KB} [N]	I _{dN} [A]		encapsulation	Control device
										MLP	
2038	167	6.1	1023	194	0.81	13	1023				HMS01.1N-W0020
3179	135	19.7	1180	190	1.08	5	1528				HMS01.1N-W0036
3750	120	29.4	1180	190	1.08	4	1770				HMS01.1N-W0054
2629	151	12.2	1076	193	0.9	7	1076	8	44	100A-0120 	HCS02.1E-W0028
3750	120	29.4	1180	190	1.08	4	1651				HCS02.1E-W0054
3750	120	29.4	1180	190	1.08	4	1770				HCS02.1E-W0070
3750	120	29.4	1180	190	1.08	4	1770				HCS03.1E-W0070
2665	180	17.4	1180	220	1.49	9	1345				HMS01.1N-W0036
3694	152	39.3	1180	220	1.49	4	1770				HMS01.1N-W0054
3750	150	40.7	1180	220	1.49	4	1770				HMS01.1N-W0070
2225	192	10.8	862	229	0.8	7	862	10	55	100A-0150	HCS02.1E-W0028
3694	152	39.3	1180	220	1.49	4	1297				HCS02.1E-W0054
3750	150	40.7	1180	220	1.49	4	1702				HCS02.1E-W0070
3750	150	40.7	1180	220	1.49	4	1770				HCS03.1E-W0150
2242	249	8.1	1180	290	1.01	12	1218				HMS01.1N-W0036
3042	218	18.2	1180	290	1.01	6	1770				HMS01.1N-W0054
3750	190	30.6	1180	290	1.01	3	1719				HMS01.1N-W0070
3750	190	30.6	1180	290	1.01	3	1770	12	70	100A-0190	HMS01.1N-W0110
1901	262	5	715	308	0.37	7	715				HCS02.1E-W0028
3042	218	18.2	1180	290	0.01	6	1180				HCS02.1E-W0054
3750	190	30.6	1180	290	1.01	3	1276				HCS02.1E-W0070
3750	190	30.6	1180	290	1.01	3	1770				HCS03.1E-W0070
3362	161	11.4	1785	190	1.4	12	1841				HMS01.1N-W0036
4549	139	25.6	1785	190	1.4	6	2678				HMS01.1N-W0054
5600	120	43	1785	190	1.4	3	2585				HMS01.1N-W0070
5600 2855	120	43 7	1785 1082	190	1.4 0.52	3	2678 1082	12	70	100B-0120	HMS01.1N-W0110 HCS02.1E-W0028
	170			203				12	/0		
4549 5600	139	25.6	1785 1785	190	1.4 1.4	6 3	1785				HCS02.1E-W0054
5600	120 120	43 43	1785	190 190	1.4	3	1927 2678				HCS02.1E-W0070 HCS03.1E-W0070
5600	120	43	1785	190	1.4	3	2678				HCS03.1E-W0070
2917	321	43	1785	350	2.1	18	1930				HMS01.1N-W0054
3481	306	19.1	1785	350	2.1	11	1862				HMS01.1N-W0034
4895	269	47.2	1785	350	2.1	4	2405				HMS01.1N-W0070
5600	209	65.9	1785	350	2.1	4	2405				HMS01.1N-W0110
2917	321	11.4	976	371	0.63	6	976	22	130	100B-0250	HCS02.1E-W0054
3509	305	19.5	1131	367	0.03	4	1131	~~		1000-0200	HCS02.1E-W0034
3481	305	19.1	1785	350	2.1	11	2265				HCS03.1E-W0070
4541	278	39	1785	350	2.1	5	2678				HCS03.1E-W0070
5600	250	65.9	1785	350	2.1	3	2678				HCS03.1E-W0100
3754	146	15.2	2285	171	2.16	14	2285	L			HMS01.1N-W0036
4888	127	34.1	2310	170	2.21	6	3132			-	HMS01.1N-W0054
5892	111	57.3	2310	170	2.21	4	3012				HMS01.1N-W0070
7150	90	94.8	2310	170	2.21	2	3465		90		HMS01.1N-W0110
4888	127	34.1	2134	173	1.89	6	2134	13		100C-0090	HCS02.1E-W0054
5941	110	58.6	2310	170	2.21	4	2368				HCS02.1E-W0070
5892	111	57.3	2310	170	2.21	4	3465				HCS03.1E-W0070
7150	90	94.8	2310	170	2.21	2	3465				HCS03.1E-W0100

										Primary part	
F _{MAX}	V _{Fmax}			v _N [m/	P _{vN}						
[N]	[m/min]	[kW]	F _{dN} [N]	min]	[kW]	[%]	F _{кв} [N]	I _{dN} [A]	I _{мах} [А]	Standard - / Thermal encapsulation	Control device
F7	r	11			[]					MLP	
3765	169	9.9	1983	195	1.4	14	1983				HMS01.1N-W0036
5014	151	22.2	2310	190	1.91	9	3079				HMS01.1N-W0054
6121	135	37.3	2310	190	1.91	5	2947				HMS01.1N-W0070
7150	120	54.9	2310	190	1.91	3	3465	45	0.5	1000 0100	HMS01.1N-W0110
5009	151	22.2	1852	197	1.23	6	1852	15	85	100C-0120	HCS02.1E-W0054
6167	134	38.1	2147	192	1.65	4	2147				HCS02.1E-W0070
6114	135	37.3	2310	190	1.91	5	3465				HCS03.1E-W0070
7150	120	54.9	2310	190	1.91	3	3465				HCS03.1E-W0100
3594	264	8.5	2310	290	1.72	20	2439				HMS01.1N-W0054
4255	250	14.3	2310	290	1.72	12	2360				HMS01.1N-W0070
5910	216	35.4	2310	290	1.72	5	2994				HMS01.1N-W0110
7150	190	57.3	2310	290	1.72	3	3465				HMS01.1N-W0150
3594	264	8.5	1208	313	0.47	6	1208	23	140	100C-0190	HCS02.1E-W0054
4287	249	14.7	1400	309	0.63	4	1400				HCS02.1E-W0070
4255	250	14.3	2310	290	1.72	12	2831				HCS03.1E-W0070
5495	224	29.2	2310	290	1.72	6	3465				HCS03.1E-W0100
7150	190	57.3	2310	290	1.72	3	3465				HCS03.1E-W0150
3135	161	10.1	1680	190	1.26	12	1732				HMS01.1N-W0036
4230	139	22.8	1680	190	1.26	6	2520				HMS01.1N-W0054
5200	120	38.2	1680	190	1.26	3	2418				HMS01.1N-W0070
5200	120	38.2	1680	190	1.26	3	2520	12	70	140A-0120	HMS01.1N-W0110
2667	170	6.2	1018	203	0.46	7	1018				HCS02.1E-W0028
4230	139	22.8	1680	190	1.26	6	1680				HCS02.1E-W0054
5200	120	38.2	1680	190	1.26	3	1811				HCS02.1E-W0070
5200	120	38.2	1680	190	1.26	3	2520				HCS03.1E-W0070
3986	139	10.9	2073	165	1.55	14	2073				HMS01.1N-W0036
5334	121	24.5	2415	160	2.1	9	3245				HMS01.1N-W0054
6529	105	41.1	2415	160	2.1	5	3102				HMS01.1N-W0070
7650	90	60.6	2415	160	2.1	3	3622	15	85	140B-0090	HMS01.1N-W0110
5334	121	24.5	1937	167	1.35	6	1937				HCS02.1E-W0054
6587	104	42	2244	162	1.81	4	2244				HCS02.1E-W0070
6529	105	41.1	2415	160	2.1	5	3622				HCS03.1E-W0070
7650	90	60.6	2415	160	2.1		3622				HCS03.1E-W0100
4581	161	14.8	2415	190	1.84	12 7	2900				HMS01.1N-W0054 HMS01.1N-W0070
5543	148	24.8	2415	190	1.84	3	2785				
7650 4581	120 161	55.9	2415 1610	190 201	1.84 0.82	6	3622 1610				HMS01.1N-W0110 HCS02.1E-W0054
5590	148	14.8 25.4	1866	197	1.1	4	1866	18	105	140B-0120	HCS02.1E-W0034
5543	140	24.8	2415	197	1.84	7	3471				HCS03.1E-W0070
5543 7348	148	24.8 50.7	2415	190	1.84	4	3622				HCS03.1E-W0070
7650	124	55.9	2415	190	1.84	3	3622				HCS03.1E-W0100
5912	86	12.9	3116	110	1.84	14	3116				HMS01.1N-W0036
8079	67	29	3150	110	1.88	6	4722				HMS01.1N-W0030
10000	50	48.7	3150	110	1.88	4	4493				HMS01.1N-W0034
10000	50	48.7	3150	110	1.88	4	4725				HMS01.1N-W0110
8097	67	29	2910	112	1.6	6	2910	13	70	140C-0050	HCS02.1E-W0054
10000	50	48.7	3150	110	1.88	4	3291				HCS02.1E-W0034
10000	50	48.7	3150	110	1.88	4	4725				HCS03.1E-W0070
10000	50	48.7	3150	110	1.88	4	4725				HCS03.1E-W0100

F _{MAX} [N]	V _{Fmax} [m/min]	P _{VMAX} [kW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]		I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation MLP	Control device
5325	168	14.2	3150	190	2.4	17	3485				HMS01.1N-W0054
6377	157	23.9	3150	190	2.4	10	3360				HMS01.1N-W0070
9013	130	59	3150	190	2.4	4	4370				HMS01.1N-W0110
10000	120	76.2	3150	190	2.4	3	4725				HMS01.1N-W0150
5325	168	14.2	1803	204	0.79	6	1803	21	125	140C-0120	HCS02.1E-W0054
6428	157	24.4	2089	201	1.06	4	2089				HCS02.1E-W0070
6377	157	23.9	3150	190	2.4	10	4109				HCS03.1E-W0070
8352	137	48.7	3150	190	2.4	5	4725				HCS03.1E-W0100
10000	120	76.2	3150	190	2.4	3	4725				HCS03.1E-W0150
5681	221	13.4	2628	256	1.78	13	2628				HMS01.1N-W0070
8150	192	33	3150	250	2.56	8	3800				HMS01.1N-W0110
10000	170	53.3	3150	250	2.56	5	4725				HMS01.1N-W0150
5729	220	13.7	1514	269	0.59	4	1514	29	140	140C-0170	HCS02.1E-W0070
5681	221	13.4	3150	250	2.56	19	3556				HCS03.1E-W0070
7531	199	27.3	3150	250	2.56	9	4708				HCS03.1E-W0100
10000	170	53.3	3150	250	2.56	5	4725				HCS03.1E-W0150
6350	377	21.9	3150	400	3.12	14	3530				HMS01.1N-W0150
8341	362	43	3150	400	3.12	7	4725	53.5	260	140C-0350	HMS01.1N-W0210
6350	377	21.9	3150	400	3.12	14	3793	55.5	200		HCS03.1E-W0150
8341	362	43	3150	400	3.12	7	4725				HCS03.1E-W0210
4445	138	11.4	2389	171	1.62	14	2389				HMS01.1N-W0036
6038	113	25.6	2415	170	1.66	6	3571				HMS01.1N-W0054
7450	90	43	2415	170	1.66	4	3402				HMS01.1N-W0070
7450	90	43	2415	170	1.66	4	3622	13	70	200A-0090	HMS01.1N-W0110
6038	113	25.6	2231	173	1.41	6	2231				HCS02.1E-W0054
7450	90	43	2415	170	1.66	4	2519				HCS02.1E-W0070
7450	90	43	2415	170	1.66	4	3622				HCS03.1E-W0070
5073	153	13.1	2415	190	1.28	10	3122				HMS01.1N-W0054
6190	138	22	2415	190	1.28	6	2988				HMS01.1N-W0070
7450	120	34.8	2415	190	1.28	4	3622				HMS01.1N-W0110
5073	153	13.1	1817	198	0.72	6	1817	16	88	200A-0120	HCS02.1E-W0054
6244	137	22.5	2105	194	0.97	4	2105				HCS02.1E-W0070
6190	138	22	2415	190	1.28	6	3622				HCS03.1E-W0070
7450	120	34.8	2415	190	1.28	4	3622				HCS03.1E-W0100
6463	76	14.7	3427	100	2.09	14	3427				HMS01.1N-W0036
8815	57	33	3465	100	2.14	6	5172				HMS01.1N-W0054
10900	40	55.4	3465	100	2.14	4	4922				HMS01.1N-W0070
10900	40	55.4	3465	100	2.14	4	5198	13	70	200B-0040	HMS01.1N-W0110
8815	57	33	3201	102	1.82	6	3201	13		2000-0040	HCS02.1E-W0054
10900	40	55.4	3465	100	2.14	4	3618				HCS02.1E-W0070
10900	40	55.4	3465	100	2.14	4	5198				HCS03.1E-W0070
10900	40	55.4	3465	100	2.14	4	5198				HCS03.1E-W0100

F _{MAX} [N]	v _{Fmax} [m/min]	P _{VMAX} [kW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation	Control device
										MLP	
5671	169	97	3465	190	1.79	18	3747				HMS01.1N-W0054
6771	159	16.2	3465	190	1.79	11	3616				HMS01.1N-W0070
9527	133	40.1	3465	190	1.79	4	4673				HMS01.1N-W0110
10900	120	56	3465	190	1.79	3	5198		100		HMS01.1N-W0150
5671	169	9.7	1894	205	0.53	6	1894	22	130	200B-0120	HCS02.1E-W0054
6825	158	16.6	2195	202	0.72	4	2195				HCS02.1E-W0070
6771	159	16.2	3465	190	1.79	11	4400				HCS03.1E-W0070
8836	140	33.1	3465	190	1.79	5	5198				HCS03.1E-W0100
10900	120	56	3465	190	1.79	3	5198				HCS03.1E-W0150
9179	132	25.8	4460	170	3.24	13	4532				HMS01.1N-W0070
13239	98	63.7	4460	170	3.24	5	6088				HMS01.1N-W0110
14250	90	75.8	4460	170	3.24	4	6690	00	400	0000 0000	HMS01.1N-W0150
9258	131	26.4	2646	185	1.14	4	2646	23	120	200C-0090	HCS02.1E-W0070
9179	132	25.8	4460	170	3.24	13	5686				HCS03.1E-W0070
12220	107	52.6	4460	170	3.24	6	6690				HCS03.1E-W0100
14250	90	75.8	4460	170	3.24	4	6690				HCS03.1E-W0150
9863	151	40.1	4460	190	3.32	8	5104				HMS01.1N-W0110
12560	132	74.6	4460	190	3.32	4	6690				HMS01.1N-W0150
14250	120	101.5	4460	190	3.32	3	6690	20	475	2000 0420	HMS01.1N-W0210
7214 9186	170	16.6 33.1	2072 4460	207	0.72	4	2072 6097	30	175	200C-0120	HCS02.1E-W0070
	156			190		10					HCS03.1E-W0100
12560	132	74.6 101.5	4460	190	3.32 3.32	4	6690 6690				HCS03.1E-W0150
14250 8281	120 201	26	4460 3830	190 223	3.74	14	3830				HCS03.1E-W0210 HMS01.1N-W0110
		48.2	4460	223	5.07	14					
10666 14250	188 170	<u>40.2</u> 94.6	4460	220	5.07	5	5591 6690	46	210	200C-0170	HMS01.1N-W0150 HMS01.1N-W0210
10666	188	48.2	4460	220	5.07	11	6064	40	210	2000-0170	HCS03.1E-W0150
14250	170	94.6	4460	220	5.07	5	6690				HCS03.1E-W0150
10131	110	26.8	4400	145	3.56	13	4802				HMS01.1N-W0070
14487	81	66.1	5560	145	4.78	7	6814				HMS01.1N-W0070
17750	60	107	5560	140	4.78	4	8340				HMS01.1N-W0150
10216		27.4	2766	140	1.18	4	2766	28	140	200D-0060	HCS02.1E-W0070
10210	110	26.8	5560	140	4.78	18	6383	20	140	2000-0000	HCS03.1E-W0070
13394	89	54.6	5560		4.78	9	8340				
17750	69 60	107	5560	140 140	4.78	4	8340				HCS03.1E-W0100 HCS03.1E-W0150
10317	149	37.8	4774	140	5.44	14	4774				HMS01.1N-W0110
13287	149	70.2	5560	180	7.37	14	6969				
17750	129	137.6	5560	180	7.37	5	8340	46	210	200D-0100	HMS01.1N-W0150 HMS01.1N-W0210
13287	129	70.2	5560	180	7.37	11	7557	40		2000-0100	HKS01.1N-W0210 HCS03.1E-W0150
17750	129	137.6	5560	180	7.37	5	8340				HCS03.1E-W0150
12432	151	57	5560	190	7.95	5 14					
12432							6408 8340				HMS01.1N-W0150
	126	<u>111.8</u>	5560	190	7.95	7	8340	53	225	200D-0120	HMS01.1N-W0210
12432 16687	151 126	57 111.8	5560 5560	190 190	7.95 7.95	14 7	6968 8340				HCS03.1E-W0150 HCS03.1E-W0210

F _{MAX} [N]	v _{Fmax} [m/min]	P _{VMAX} [kW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation	Control device
6202	122	17.6	3350	160	2.44	14	3944			MLP	
6292	133			160							HMS01.1N-W0054
7636	121 90	29.6 73.2	3350	160	2.44	8	3784				HMS01.1N-W0070
11000			3350	160	2.44		5025				HMS01.1N-W0110
11000	90	73.2	3350	160	2.44	3	5025	10	110	2004 0000	HMS01.1N-W0150
6292 7701	133	17.6	2117	171	0.97	6	2117	19	110	300A-0090	HCS02.1E-W0054
7636	120 121	30.3	2453 3350	168	1.31 2.44	4	2453 4741				HCS02.1E-W0070 HCS03.1E-W0070
		29.6		160		0 4					
10156	98	60.4	3350	160	2.44	· · ·	5025				HCS03.1E-W0100
11000	90	73.2	3350	160	2.44	3	5025				HCS03.1E-W0150
5414	171	11.4	3350	190	2.3	20	3557				HMS01.1N-W0054
6477	161	19.1	3350	190	2.3 2.3	12 5	3430				HMS01.1N-W0070
9138	137	47.2	3350	190			4450				HMS01.1N-W0110
11000	120	74.3	3350	190	2.3	3	5025	00	400	2004 0400	HMS01.1N-W0150
5414	171	11.4	1752	205	0.63	6	1752	23	138	300A-0120	HCS02.1E-W0054
6528	161	19.5	2031	202	0.84	4	2031				HCS02.1E-W0070
6477	161	19.1	3350	190	2.3	12	4187				HCS03.1E-W0070
8470	143	39	3350	190	2.3	6	5025				HCS03.1E-W0100
11000	120	74.3	3350	190	2.3	3	5025				HCS03.1E-W0150
9331	114	25.8	4448	144	3.43	13	4448				HMS01.1N-W0070
13315	89	63.7	5150	140	4.6	7	6297			300B-0070	HMS01.1N-W0110
16300	70	103.2	5150	140	4.6	4	7725				HMS01.1N-W0150
9409	113	26.4	2562	156	1.14	4	2562	28	140		HCS02.1E-W0070
9331	114	25.8	5150	140	4.6	18	5903				HCS03.1E-W0070
12316	95	52.6	5150	140	4.6	9	7725				HCS03.1E-W0100
16300	70	103.2	5150	140	4.6	4	7725				HCS03.1E-W0150
10071	159	30.7	5150	190	3.46	11	5447				HMS01.1N-W0110
12692	143	57	5150	190	3.46	6	7117				HMS01.1N-W0150
16300	120	106.5	5150	190	3.46	3	7725	35	205	300B-0120	HMS01.1N-W0210
9412	163	25.3	5150	190	3.46	14	6411				HCS03.1E-W0100
12692	143	57	5150	190	3.46	6	7636				HCS03.1E-W0150
16300	120	106.6	5150	190	3.46	3	7725				HCS03.1E-W0210
12180	92	13.4	5605	114	1.78	13	5605				HMS01.1N-W0070
17508	74	33	6720	110	2.56	5	8123				HMS01.1N-W0110
21500	60	53.5	6720	110	2.56	5	10080				HMS01.1N-W0150
12284	91	13.7	3229	122	0.59	4	3229	29	140	300C-0060	HCS02.1E-W0070
12180	92	13.4	6720	110	2.56	19	7596				HCS03.1E-W0070
16172	78	27.3	6720	110	2.56	9	10080				HCS03.1E-W0100
21500	60	53.5	6720	110	2.56	5	10080			ļ	HCS03.1E-W0150
12889	125	37.8	6720	150	4.76	13	6935				HMS01.1N-W0110
16263	111	70.2	6720	150	4.76	7	9085				HMS01.1N-W0150
21333	91	137.6	6720	150	4.76	3	10080	37	212	300C-0090	HMS01.1N-W0210
12041	128	31.2	6720	150	4.76	15	8176				HCS03.1E-W0100
16263	111	70.2	6720	150	4.76	7	9754				HCS03.1E-W0150
21333	91	137.6	6720	150	4.76	3	10080				HCS03.1E-W0210

Fig.10-2:

Possible combination at separate arrangement

10.3 Motor-control-combination; parallel arrangement of the primary part

10.3.1 Controlled constant DC link, rated connecting voltage 3 x AV 400 V

										Primary part	
F _{MAX} [N]	v _{Fmax} [m/min]	Р _{VMAX} [kW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Standard - / Thermal encapsulation MLP	Control device
905	427	3.4	415	516	0.45	13	415				HMS01.1N-W0020
1460	326	11	500	500	0.66	6	657				HMS01.1N-W0036
1600	300	13.6	500	500	0.66	5	750				HMS01.1N-W0054
610	480	1.1	562	520	0.07	6	161	4.2	20	040A-0300	HCS02.1E-W0012
1192	374	6.8	512	500	0.5	7	436				HCS02.1E-W0028
1600	300	13.1	500	500	0.66	5	750				HCS02.1E-W0054
1600	300	13.6	500	500	0.66	5	750				HCS03.1E-W0070
1315	245	5	615	312	0.67	13	615				HMS01.1N-W0020
2102	169	16.3	740	300	0.98	6	963				HMS01.1N-W0036
2300	150	20.1	740	300	0.98	5	1110				HMS01.1N-W0054
897	285	1.7	238	348	0.1	6	238	4.2	20	040B-0150	HCS02.1E-W0012
1722	206	10.1	646	309	0.74	7	646	7.2		0400 0100	HCS02.1E-W0028
2300	150	20.1	740	300	0.98	5	1097				HCS02.1E-W0054
2300	150	20.1	740	300	0.98	5	1110				HCS02.1E-W0070
2300	150	20.1	740	300	0.98	5	1110				HCS03.1E-W0070
1078	368	2.5	483	425	0.34	13	483				HMS01.1N-W0020
1652	312	8.2	740	400	0.8	10	822				HMS01.1N-W0036
2300	250	18.5	740	400	0.8	4	1110			040B-0250	HMS01.1N-W0054
2300	250	18.5	740	400	0.8	4	1110	5.3	27		HMS01.1N-W0070
1375	339	5.1	508	423	0.37	7	508	5.5	21		HCS02.1E-W0028
2300	250	18.5	740	400	0.8	4	791				HCS02.1E-W0054
2300	250	18.5	740	400	0.8	4	1057				HCS02.1E-W0070
2300	250	18.5	740	400	0.8	4	1110				HCS03.1E-W0070
955	473	2	427	541	0.26	13	427				HMS01.1N-W0020
1385	418	6.3	740	500	0.79	12	763				HMS01.1N-W0036
1870	355	14.2	740	500	0.79	6	1110				HMS01.1N-W0054
2300	300	23.9	740	500	0.79	3	1067				HMS01.1N-W0070
2300	300	23.9	740	500	0.79	3	1110	6	35	040B-0350	HMS01.1N-W0110
1178	444	3.9	448	538	0.29	7	448				HCS02.1E-W0028
1870	355	14.2	740	500	0.79	6	740				HCS02.1E-W0054
2300	300	23.9	740	500	0.79	3	798				HCS02.1E-W0070
2300	300	23.9	740	500	0.79	3	1110				HCS03.1E-W0070
1527	193	3.5	691	207	0.47	13	691				HMS01.1N-W0020
2288	180	11.4	1100	200	1.19	10	1187				HMS01.1N-W0036
3145	165	25.6	1100	200	1.19	5	1650				HMS01.1N-W0054
3906	152	43	1100	200	1.19	3	1650				HMS01.1N-W0070
4000	150	45.5	1100	200	1.19	3	1650			0704 0450	HMS01.1N-W0110
1921	186	7	726	207	0.52	7	726	5.5	36	070A-0150	HCS02.1E-W0028
3145	165	25.6	1100	200	1.19	5	1147				HCS02.1E-W0054
3943	151	44	1100	200	1.19	3	1238				HCS02.1E-W0070
3906	152	43	1100	200	1.19	3	1650				HCS03.1E-W0070
4000	150	45.5	1100	200	1.19	3	1650				HCS03.1E-W0100

			1						1	Primary part	
F _{MAX}	V _{Fmax}	P _{VMAX}		v _N [m/	P _{vN}			1 741		Standard - / Thermal	
[N]	[m/min]		F _{dN} [N]	min]	[kW]	[%]	F _{KB} [N]	IdN [A]		encapsulation	Control device
				_						MLP	
1401	346	1.3	606	384	0.17	13	606				HMS01.1N-W0020
2050	314	4.2	1100	360	0.57	14	1111				HMS01.1N-W0036
2783	279	9.4	1100	360	0.57	6	1648				HMS01.1N-W0054
3431	248	15.8	1100	360	0.57	4	1571				HMS01.1N-W0070
4000	220	22.7	1100	360	0.57	3	1650	6.2	40	0704 0000	HMS01.1N-W0110
1737	329	2.6	637	383	0.19	7	637	6.3	42	070A-0220	HCS02.1E-W0028
2783	279	9.4	1051	363	0.52	6	1051				HCS02.1E-W0054
3463	246	16.1	1100	360	0.57	4	1155				HCS02.1E-W0070
3431	248	15.8	1100	360	0.57	4	1650				HCS03.1E-W0070
4000	220	22.7	1100	360	0.57	3	1650				HCS03.1E-W0100
1590	425	3.7	676	472	0.52	14	676				HMS01.1N-W0036
2177	395	8.3	1100	450	1.38	17	1268				HMS01.1N-W0054
2697	368	13.9	1100	450	1.38	10	1206				HMS01.1N-W0070
4000	300	34.2	1100	450	1.38	4	1650				HMS01.1N-W0110
1339	438	2.3	383	487	0.17	7	383	10.5	55	070A-0300	HCS02.1E-W0028
2177	395	8.3	632	475	0.46	6	632	10.5	55	070A-0300	HCS02.1E-W0054
2723	366	14.2	732	469	0.61	4	732				HCS02.1E-W0070
2697	368	13.9	1100	450	1.38	10	1576				HCS03.1E-W0070
3673	317	28.3	1100	450	1.38	5	1650				HCS03.1E-W0100
4000	300	34.2	1100	450	1.38	4	1650				HCS03.1E-W0150
2351	180	5.9	1030	217	0.79	13	1030				HMS01.1N-W0020
3616	145	19.1	1640	200	2	10	1786			070B-0100	HMS01.1N-W0036
5043	104	43	1640	200	2	5	2460				HMS01.1N-W0054
5200	100	46.2	1640	200	2	4	2460	5.5	28		HMS01.1N-W0070
3006	162	11.8	1083	216	0.87	7	1083	0.0			HCS02.1E-W0028
5043	104	43	1640	200	2	5	1718				HCS02.1E-W0054
5200	100	46.2	1640	200	2	4	2254				HCS02.1E-W0070
5200	100	46.2	1640	200	2	4	2460				HCS03.1E-W0070
2054	209	3.6	980	239	0.48	13	980				HMS01.1N-W0020
2839	186	11.6	1640	220	1.35	12	1703				HMS01.1N-W0036
3726	162	26.2	1640	220	1.35	5	2353				HMS01.1N-W0054
4512	139	44	1640	220	1.35	3	2259				HMS01.1N-W0070
5200	120	63.3	1640	220	1.35	2	2460	5.8	42	070B-0120	HMS01.1N-W0110
2460	197	7.2	1030	237	0.53	7	1030				HCS02.1E-W0028
3726	162	26.2	1640	220	1.35	5	1661				HCS02.1E-W0054
4550	138	44.9	1640	220	1.35	3	1755				HCS02.1E-W0070
4512	139	44	1640	220	1.35	3	2460				HCS03.1E-W0070
5200	120	63.3	1640	220	1.35	2	2460		ļ		HCS03.1E-W0100
1962	250	2.4	913	283	0.32	13	913				HMS01.1N-W0020
2643	229	7.7	1640	260	1.03	13	1658				HMS01.1N-W0036
3411	205	17.4	1640	260	1.03	6	2221				HMS01.1N-W0054
4092	184	29.1	1640	260	1.03	4	2140				HMS01.1N-W0070
5200	150	54.8	1640	260	1.03	2	2460	6.2	2 48	070B-0150	HMS01.1N-W0110
2315	239	4.8	960	281	0.35	7	960				HCS02.1E-W0028
3411	205	17.4	1584	262	0.96	6	1584				HCS02.1E-W0054
4125	183	29.8	1640	260	1.03	3	1703				HCS02.1E-W0070
4092	184	29.1	1640	260	1.03	4	2460				HCS03.1E-W0070
5200	150	54.8	1640	260	1.03	2	2460				HCS03.1E-W0100

F _{MAX}	V _{Fmax}	P _{VMAX}	F _{dN} [N]	v _N [m/	P _{vN}	EDFMAX	E INI	I [A]	I [A]	Primary part Standard - / Thermal	Control device
[N]	[m/min]	[kW]		min]	[kW]	[%]	' KB ['']	'dN [(^)]	ייאג אאיי	encapsulation MLP	
2274	374	3.8	1058	425	0.54	14	1058				HMS01.1N-W0036
2987	343	8.5	1640	400	1.3	15	1883				HMS01.1N-W0054
3618	317	14.3	1640	400	1.3	9	1808				HMS01.1N-W0070
5200	250	35.4	1640	400	1.3	4	2414				HMS01.1N-W0110
5200	250	35.4	1640	400	1.3	4	2460				HMS01.1N-W0150
1970	386	2.3	599	444	0.17	7	599	10	55	070B-0250	HCS02.1E-W0028
2987	343	8.5	989	428	0.47	6	989				HCS02.1E-W0054
3649	316	14.7	1146	421	0.63	4	1146				HCS02.1E-W0070
3618	317	14.3	1640	400	1.3	9	2258				HCS03.1E-W0070
4803	267	29.2	1640	400	1.3	4	2460				HCS03.1E-W0100
5200	250	35.4	1640	400	1.3	4	2460				HCS03.1E-W0150
2007	435	3	878	482	0.43	14	878				HMS01.1N-W0036
2560	411	6.8	1640	450	1.51	22	1703				HMS01.1N-W0054
3051	391	11.5	1640	450	1.51	13	1644				HMS01.1N-W0070
4280	339	28.3	1640	450	1.51	5	2115				HMS01.1N-W0110
5200	300	45.9	1640	450	1.51	3	2460				HMS01.1N-W0150
1770	445	1.9	497	498	0.14	7	497	12	70	070B-0300	HCS02.1E-W0028
2560	411	6.8	820	485	0.38	6	820				HCS02.1E-W0054
3075	390	11.7	950	479	0.51	4	950				HCS02.1E-W0070
3051	391	11.5	1650	450	1.51	13	1994				HCS03.1E-W0070
3971	352	23.4	1640	450	1.51	6	2460				HCS03.1E-W0100
5200	300	45.9	1640	450	1.51	3	2460				HCS03.1E-W0150
3425	168	7.2	1733	188	1.03	14	1733				HMS01.1N-W0036
4442	157	16.2	2400	180	1.97	12	2867				HMS01.1N-W0054
5343	146	27.2	2400	180	1.97	7	2759				HMS01.1N-W0070
7600	120	67.6	2400	180	1.97	3	3600				HMS01.1N-W0110
7600	120	67.6	2400	180	1.97	3	3600				HMS01.1N-W0150
2990	173	4.4	981	196	0.33	7	981	8.9	55	070C-0120	HCS02.1E-W0028
4442	157	16.2	1619	189	0.9	6	1619				HCS02.1E-W0054
5387	146	27.8	1876	186	1.2	4	1876				HCS02.1E-W0070
5343	146	27.2	2400	180	1.97	7	3401				HCS03.1E-W0070
7034	127	55.6	2400	180	1.97	4	3600				HCS03.1E-W0100
7600	120	67.6	2400	180	1.97	3	3600				HCS03.1E-W0150
2964	239	5.2	1324	271	0.74	14	1324				HMS01.1N-W0036
3768	224	11.7	2400	250	2.43	21	2523				HMS01.1N-W0054
4480	210	19.6	2400	250	2.43	12	2438				HMS01.1N-W0070
6264	176	48.4	2400	250	2.43	5	3122				HMS01.1N-W0110
7600	150	78.4	2400	250	2.43	3	3600				HMS01.1N-W0150
2621	246	3.2	749	282	0.24	7	749	11.7	70	070C-0150	HCS02.1E-W0028
3768	224	11.7	1236	273	0.64	6	1236				HCS02.1E-W0054
4515	209	20	1433	269	0.87	4	1433				HCS02.1E-W0070
4480	210	19.6	2400	250	2.43	12	2945				HCS03.1E-W0070
5816	184	40	2400	250	2.43	6	3600				HCS03.1E-W0100
7600	150	78.4	2400	250	2.43	3	3600				HCS03.1E-W0150

F _{MAX} [N]	v _{Fmax} [m/min]	P _{vmax} [kW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{KB} [N]	I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation	Control device
2737	343	2.5	1187	376	0.36	14	1187			MLP	HMS01.1N-W0036
3345	330	5.7	2400	350	1.47	26	2402				HMS01.1N-W0054
3885	319	9.6	2230	354	1.27	13	2230				HMS01.1N-W0070
5236	290	23.6	2400	350	1.47	6	2856				HMS01.1N-W0110
6585	262	43.9	2400	350	1.47	3	3600				HMS01.1N-W0150
7600	240	63.2	2400	350	1.47	2	3600			0700.0040	HMS01.1N-W0210
3345	330	5.7	1109	378	0.31	6	1109	13	90	070C-0240	HCS02.1E-W0054
3911	318	9.8	1285	374	0.42	4	1285				HCS02.1E-W0070
3885	319	9.6	2400	350	1.47	15	2722				HCS03.1E-W0070
4897	297	19.5	2400	350	1.47	8	3353				HCS03.1E-W0100
6585	262	43.9	2400	350	1.47	3	3600				HCS03.1E-W0150
7600	240	63.2	2400	350	1.47	2	3600				HCS03.1E-W0210
2857	437	4.3	1646	472	1.11	26	1646				HMS01.1N-W0054
3313	424	7.2	1526	476	0.95	13	1526				HMS01.1N-W0070
4457	391	17.7	2400	450	2.36	13	2442				HMS01.1N-W0110
5598	358	32.9	2400	450	2.36	7	3170				HMS01.1N-W0150
7313	308	64.5	2400	450	2.36	4	3600				HMS01.1N-W0210
2857	437	4.3	758	498	0.24	6	758	19	110	070C-0300	HCS02.1E-W0054
3335	423	7.3	879	494	0.32	4	879				HCS02.1E-W0070
3313	424	7.2	2244	455	2.06	29	2244				HCS03.1E-W0070
4170	399	14.6	2400	450	2.36	16	2863				HCS03.1E-W0100
5598	358	32.9	2400	450	2.36	7	3396				HCS03.1E-W0150
7313	308	64.5	2400	450	2.36	4	3600				HCS03.1E-W0210
2921 4230	144 128	4.8 15.4	1243 2309	163 151	0.64 2.2	13 14	1243 2309				HMS01.1N-W0020
5706	128	34.7	2309	151	2.2	7	2309 3419				HMS01.1N-W0036 HMS01.1N-W0054
7014	96	58.3	2360	150	2.3	4	3263				HMS01.1N-W0034
7500	90	68.6	2360	150	2.3	3	3540				HMS01.1N-W0070
3599	136	9.5	1307	162	0.7	7	1307	6.6	38	100A-0090	HCS02.1E-W0028
5706	111	34.7	2157	152	1.92	6	2157				HCS02.1E-W0020
7077	95	59.6	2360	150	2.3	4	2424				HCS02.1E-W0070
7014	96	58.3	2360	150	2.3	4	3540				HCS03.1E-W0070
7500	90	68.6	2360	150	2.3	3	3540				HCS03.1E-W0100
2648	186	3	1023	208	0.41	13	1023				HMS01.1N-W0020
3789	171	9.9	1901	196	1.4	14	1901				HMS01.1N-W0036
5076	153	22.8	2360	190	2.17	10	3082				HMS01.1N-W0054
6218	138	37.3	2360	190	2.17	6	2948				HMS01.1N-W0070
7500	120	58.8	2360	190	2.17	4	3540			4004.0400	HMS01.1N-W0110
3239	178	6.1	1076	208	0.45	7	1076	8	44	100A-0120	HCS02.1E-W0028
5076	153	22.2	1775	198	1.23	6	1775				HCS02.1E-W0054
6273	137	38.1	2057	194	1.65	4	2057				HCS02.1E-W0070
6218	138	37.3	2360	190	2.17	6	3540				HCS03.1E-W0070
7500	120	58.8	2360	190	2.17	4	3540				HCS03.1E-W0100

						1			1	Primary part	
F _{MAX}	V _{Fmax}	PVMAX		v _N [m/	P _{vN}					Standard - / Thermal	
[N]	[m/min]	[kW]	F _{dN} [N]	min]	[kW]	[%]	F _{KB} [N]	I _{dN} [A]		encapsulation	Control device
										 MLP	
3276	208	8.7	1523	232	1.24	14	1523				HMS01.1N-W0036
4305	194	19.6	2360	220	2.98	15	2711				HMS01.1N-W0054
5216	181	33	2360	220	2.98	9	2601				HMS01.1N-W0070
7500	150	81.4	2360	220	2.98	4	3478				HMS01.1N-W0110
7500	150	81.4	2360	220	2.98	4	3540				HMS01.1N-W0150
2836	214	5.4	862	241	0.4	7	862	10	55	100A-0150	HCS02.1E-W0028
4305	194	19.6	1423	233	1.08	6	1423				HCS02.1E-W0054
5261	181	33.7	1649	230	1.46	4	1649				HCS02.1E-W0070
5216	181	33	2360	220	2.98	9	3252				HCS03.1E-W0070
6927	158	67.3	2360	220	2.98	4	3540				HCS03.1E-W0100
7500	150	81.4	2360	220	2.98	4	3540				HCS03.1E-W0150
2890	280	4	1263	312	0.58	14	1263				HMS01.1N-W0036
3689	264	9.1	2360	290	2.01	22	2451				HMS01.1N-W0054
4397	251	15.3	2360	290	2.01	13	2366				HMS01.1N-W0070
6171	216	37.8	2360	290	2.01	5	3046				HMS01.1N-W0110
7500	190	61.2	2360	290	2.01	3	3540				HMS01.1N-W0150
2548	287	2.5	715	322	0.18	7	715	12	70	100A-0190	HCS02.1E-W0028
3689	264	9.1	1180	313	0.5	6	1180				HCS02.1E-W0054
4432	250	15.6	1367	310	0.68	4	1367				HCS02.1E-W0070
4397	251	15.3	2360	290	2.01	13	2871				HCS03.1E-W0070
5726	225	31.2	2360	290	2.01	6	3540				HCS03.1E-W0100
7500	190	61.2	2360	290	2.01	3	3540				HCS03.1E-W0150
4356	183	5.7	1911	205	0.81	14	1911				HMS01.1N-W0036
5543	172	12.7	3570	190	2.83	22	3705				HMS01.1N-W0054
6594	162	21.5	3570	190	2.83	13	3579				HMS01.1N-W0070
9227	138	53.1	3570	190	2.83	5	4589				HMS01.1N-W0110
11200	120	86	3570	190	2.83	3	5355				HMS01.1N-W0150
3849	188	3.5	1082	213	0.26	7	1082	12	70	100B-0120	HCS02.1E-W0028
5543	172	12.8	1785	207	0.71	6	1785				HCS02.1E-W0054
6645	162	22	2068	204	0.95	4	2068				HCS02.1E-W0070
6594	162	21.5	3570	190	2.83	13	4328				HCS03.1E-W0070
8567	144	43.9	3570	190	2.83	6	5355				HCS03.1E-W0100
11200	120	86	3570	190	2.83	3	5355				HCS03.1E-W0150
3925	346	5.7	2118	369	1.48	26	2118				HMS01.1N-W0054
4489	338	9.6	1963	371	1.27	13	1963				HMS01.1N-W0070
5903	320	23.6	3208	355	3.4	14	3208				HMS01.1N-W0110
7315	301	43.9	3570	350	4.21	10	4312				HMS01.1N-W0150
9436	273	86	3570	350	4.21	5	5355		400	4000 0050	HMS01.1N-W0210
3925	346	5.7	976	384	0.31	6	976	22	130	100B-0250	HCS02.1E-W0054
4517	338	9.8	1131	382	0.42	4	1131				HCS02.1E-W0070
4489	338	9.6	2887	359	2.75	29	2887				HCS03.1E-W0070
5549	324	19.5	3570	350	4.21	22	3932				HCS03.1E-W0100
7315	301	43.9	3570	350	4.21	10	4592				HCS03.1E-W0150
9436	273	86	3570	350	4.21	5	5355				HCS03.1E-W0210

-		_		. ,	_					Primary part	
F _{MAX} [N]	v _{Fmax} [m/min]	P _{VMAX} [kW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{KB} [N]	I _{dN} [A]	I _{MAX} [A]	Standard - / Thermal encapsulation MLP	Control device
5247	165	7.6	2285	189	1.08	14	2285				HMS01.1N-W0036
6380	156	17.1	4620	170	4.42	26	4624				HMS01.1N-W0054
7384	147	28.7	4294	173	3.82	13	4294				HMS01.1N-W0070
9900	126	70.8	4620	170	4.42	6	5469				HMS01.1N-W0110
12411	106	131.6	4620	170	4.42	3	6930				HMS01.1N-W0150
14300	90	189.6	4620	170	4.42	2	6930	13	90	100C-0090	HMS01.1N-W0210
6380	156	17.1	2134	191	0.94	6	2134	13	90	1000-0090	HCS02.1E-W0054
7433	147	29.3	2473	188	1.27	4	2473				HCS02.1E-W0070
7384	147	28.7	4620	170	4.42	15	5220				HCS03.1E-W0070
9269	132	58.5	4620	170	4.42	8	6393				HCS03.1E-W0100
12411	106	131.6	4620	170	4.42	3	6930				HCS03.1E-W0150
14300	90	189.6	4620	170	4.42	2	6930				HCS03.1E-W0210
5036	187	4.9	1983	209	0.7	14	1983				HMS01.1N-W0036
6282	178	11.1	4021	194	2.89	26	4021				HMS01.1N-W0054
7387	170	18.6	3727	197	2.48	13	3727				HMS01.1N-W0070
10154	150	46	4620	190	3.81	8	5280				HMS01.1N-W0110
12916	130	85.5	4620	190	3.81	4	6930				HMS01.1N-W0150
14300	120	109.9	4620	190	3.81	3	6930	15	85	100C-0120	HMS01.1N-W0210
6282	178	11.1	1852	210	0.61	6	1852	15	05	1000-0120	HCS02.1E-W0054
7441	170	19.1	2147	208	0.82	4	2147				HCS02.1E-W0070
7387	170	18.6	4620	190	3.81	20	5006				HCS03.1E-W0070
9470	155	38	4620	190	3.81	10	6297				HCS03.1E-W0100
12916	130	85.5	4620	190	3.81	4	6930				HCS03.1E-W0150
14300	120	109.9	4620	190	3.81	3	6930				HCS03.1E-W0210
4953	287	4.3	2623	311	1.11	26	2623				HMS01.1N-W0054
5614	280	7.2	2431	313	0.95	13	2431				HMS01.1N-W0070
7270	263	17.7	3973	297	2.55	14	3973				HMS01.1N-W0110
8922	246	32.9	4620	290	3.45	10	5407				HMS01.1N-W0150
11405	220	64.5	4620	290	3.45	5	6930				HMS01.1N-W0210
4953	287	4.3	1208	325	0.24	6	1208	23	140	100C-0190	HCS02.1E-W0054
5646	280	7.3	1400	323	0.32	4	1400				HCS02.1E-W0070
5614	280	7.2	3575	301	2.06	29	3575				HCS03.1E-W0070
6854	267	14.6	4620	290	3.45	24	4962				HCS03.1E-W0100
8922	246	32.9	4620	290	3.45	10	5734				HCS03.1E-W0150
11405	220	64.5	4620	290	3.45	5	6930		<u> </u>		HCS03.1E-W0210
4085	183	5.1	1799	206	0.72	14	1799				HMS01.1N-W0036
5180	172	11.4	3360	190	2.51	22	3484				HMS01.1N-W0054
6150	162	19.1	3360	190	2.51	13	3369				HMS01.1N-W0070
8580	138	47.2	3360	190	2.51	5	4300				HMS01.1N-W0110
10400	120	76.4	3360	190	2.51	3	5040				HMS01.1N-W0150
3618	188	3.1	1018	213	0.23	7	1018	12	70	140A-0120	HCS02.1E-W0028
5180	172	11.4	1680	207	0.63	6	1680				HCS02.1E-W0054
6197	162	19.5	1947	204	0.84	4	1947				HCS02.1E-W0070
6150	162	19.1	3360	190	2.51	13	4060				HCS03.1E-W0070
7970	144	39	3360	190	2.51	6	5040				HCS03.1E-W0100
10400	120	76.4	3360	190	2.51	3	5040				HCS03.1E-W0150

F _{MAX}	V _{Fmax}	P _{VMAX}		v _n [m/	P _{vN}	ED _{FMAX}				Primary part	
[N]	[m/min]	[kW]	F _{dN} [N]	min]	[kW]	[%]	F _{KB} [N]	I _{dN} [A]	IMAX [A]	Standard - / Thermal encapsulation MLP	Control device
5279	157	5.4	2073	179	0.77	14	2073				HMS01.1N-W0036
6628	148	12.2	4203	164	3.18	26	4203				HMS01.1N-W0054
7823	140	20.5	3896	166	2.73	13	3896				HMS01.1N-W0070
10816	120	50.8	4830	160	4.2	8	5544				HMS01.1N-W0110
13804	100	94.3	4830	160	4.2	4	7245				HMS01.1N-W0150
15300	90	121.1	4830	160	4.2	3	7245	15	85	140B-0090	HMS01.1N-W0210
6628	148	12.2	1937	179	0.68	6	1937	15	00	1400-0090	HCS02.1E-W0054
7881	140	21	2244	177	0.91	4	2244				HCS02.1E-W0070
7823	140	20.5	4830	160	4.2	20	5248				HCS03.1E-W0070
10065	125	41.9	4830	160	4.2	10	6644				HCS03.1E-W0100
13804	100	94.3	4830	160	4.2	4	7245				HCS03.1E-W0150
15300	90	121.1	4830	160	4.2	3	7245				HCS03.1E-W0210
5911	183	7.4	3495	199	1.92	26	3495				HMS01.1N-W0054
6873	176	12.4	3239	201	1.65	13	3239				HMS01.1N-W0070
9282	160	30.7	4830	190	3.68	12	5039				HMS01.1N-W0110
11687	144	57	4830	190	3.68	6	6571				HMS01.1N-W0150
15300	120	111.1	4830	190	3.68	3	7245				HMS01.1N-W0210
5911	183	7.4	1610	212	0.41	6	1610	18	105	140B-0120	HCS02.1E-W0054
6920	176	12.7	1866	210	0.55	4	1866				HCS02.1E-W0070
6873	176	12.4	4764	191	3.58	29	4764				HCS03.1E-W0070
8678	164	25.3	4830	190	3.68	15	5924				HCS03.1E-W0100
11687	144	57	4830	190	3.68	6	7047				HCS03.1E-W0150
15300	120	111.8	4830	190	3.68	3	7245		ļ		HCS03.1E-W0210
7498	105	6.4	3116	124	0.92	14	3116				HMS01.1N-W0036
9666	95	14.5	6300	110	3.76	26	6308				HMS01.1N-W0054
11586	87	24.4	5855	112	3.24	13	5855				HMS01.1N-W0070
16397	66	60.2	6300	110	3.76	6	7923				HMS01.1N-W0110
20000	50	91.5	6300	110	3.76	4	9450	13	70	140C-0050	HMS01.1N-W0150
9666	95	14.5	2910	125	0.8	6	2910	10			HCS02.1E-W0054
11680	86	24.9	3373	123	1.08	4	3373				HCS02.1E-W0070
11586	87	24.4	6300	110	3.76	15	7447				HCS03.1E-W0070
15190	71	49.7	6300	110	3.76	8	9450				HCS03.1E-W0100
20000	50	97.5	6300	110	3.76	4	9450				HCS03.1E-W0150
7092	186	7.1	3914	202	1.85	26	3914				HMS01.1N-W0054
8144	181	11.9	3627	204	1.59	13	3627				HMS01.1N-W0070
10780	167	29.5	5929	192	4.25	14	5929				HMS01.1N-W0110
13411	154	54.8	6300	190	4.8	9	7813				HMS01.1N-W0150
17364	134	107.5	6300	190	4.8	4	9450				HMS01.1N-W0210
7092	186	7.1	1803	213	0.39	6	1803	21	125	140C-0120	HCS02.1E-W0054
8195	180	12.2	2089	212	0.53	4	2089				HCS02.1E-W0070
8144	181	11.9	5335	195	3.44	29	5335				HCS03.1E-W0070
10118	171	24.4	6300	190	4.8	20	7106				HCS03.1E-W0100
13411	154	54.8	6300	190	4.8	9	8335				HCS03.1E-W0150
17364	134	107.5	6300	190	4.8	4	9450				HCS03.1E-W0210

F _{MAX} [N]	V _{Fmax} [m/min]	P _{VMAX} [kW]	F _{dN} [N]	v _n [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation MLP	Control device
7042	246	6.7	2628	272	0.89	13	2628				HMS01.1N-W0070
9511	231	16.5	4295	262	2.38	14	4295				HMS01.1N-W0110
11976	217	30.7	6300	250	5.12	17	6732				HMS01.1N-W0150
15681	195	60.2	6300	250	5.12	9	9201				HMS01.1N-W0210
7090	246	6.8	1514	278	0.3	4	1514	29	140	140C-0170	HCS02.1E-W0070
7042	246	6.7	3865	264	1.93	29	3865				HCS03.1E-W0070
8892	235	13.6	5893	253	4.48	33	5893				HCS03.1E-W0100
11976	217	30.7	6300	250	5.12	17	7221				HCS03.1E-W0150
15681	195	60.2	6300	250	5.12	9	9450				HCS03.1E-W0210
7724	395	11	3824	409	2.3	21	3824		1		HMS01.1N-W0150
9716	388	21.5	6179	401	6	28	6179			4400 0050	HMS01.1N-W0210
7724	395	11	4290	408	2.89	26	4290	53.5	260	140C-0350	HCS03.1E-W0150
9716	388	21.5	6300	400	6.23	29	6574				HCS03.1E-W0210
5711	163	5.7	2389	190	0.81	14	2389				HMS01.1N-W0036
7304	150	12.8	4830	170	3.31	26	4836				HMS01.1N-W0054
8716	139	21.5	4489	173	2.86	13	4489				HMS01.1N-W0070
12251	111	53.1	4830	170	3.31	6	6023				HMS01.1N-W0110
14900	90	86	4830	170	3.31	4	7245	13	70	2004 0000	HMS01.1N-W0150
7304	150	12.8	2231	191	0.71	6	2231	13	///	200A-0090	HCS02.1E-W0054
8784	139	22	2586	188	0.95	4	2586				HCS02.1E-W0070
8716	139	21.5	4830	170	3.31	15	5673				HCS03.1E-W0070
11364	118	43.9	4830	170	3.31	8	7245				HCS03.1E-W0100
14900	90	86	4830	170	3.31	4	7245				HCS03.1E-W0150
6379	179	6.5	3943	196	1.7	26	3943				HMS01.1N-W0054
7488	172	11	3655	198	1.46	13	3655				HMS01.1N-W0070
10285	152	27.1	4830	190	2.56	9	5359				HMS01.1N-W0110
13077	132	50.4	4830	190	2.56	5	7138				HMS01.1N-W0150
14900	120	69.5	4830	190	2.56	4	7245				HMS01.1N-W0210
6372	179	6.5	1817	211	0.36	6	1817	16	88	200A-0120	HCS02.1E-W0054
7543	171	11.2	2105	209	0.49	4	2105				HCS02.1E-W0070
7488	172	11	4830	190	2.56	23	5082				HCS03.1E-W0070
9583	157	22.4	4830	190	2.56	11	6386				HCS03.1E-W0100
13077	133	50.4	4830	190	2.56	5	7245				HCS03.1E-W0150
14900	120	69.5	4830	190	2.56	4	7245				HCS03.1E-W0210
8231	95	7.3	3427	114	1.04	14	3427				HMS01.1N-W0036
10583	85	16.5	6930	100	4.27	26	6939				HMS01.1N-W0054
12668	77	27.7	6440	102	3.69	13	6440				HMS01.1N-W0070
17889	56	68.5	6930	100	4.27	6	8692				HMS01.1N-W0110
21800	40	110.8	6930	100	4.27	4	10395	13	70	200B-0040	HMS01.1N-W0150
10583	5	16.5	3201	115	0.91	6	3201	-			HCS02.1E-W0054
12769	76	28.3	3710	113	1.22	4	3710				HCS02.1E-W0070
12668	77	27.7	6930	100	4.27	15	8175				HCS03.1E-W0070
16579	61	56.5	6930	100	4.27	8	10395				HCS03.1E-W0100
21800	40	110.8	6930	100	4.27	4	10395				HCS03.1E-W0150

				[[1			1	Primary part	
F _{MAX}	V _{Fmax}			v _N [m/	P _{vN}						
[N]	[m/min]	[kW]	F _{dN} [N]	min]	[kW]	[%]	F _{кв} [N]	I _{dN} [A]	I _{мах} [А]	Standard - / Thermal encapsulation	Control device
	· ·			-						MLP	
7621	187	4.8	4111	203	1.26	26	4111				HMS01.1N-W0054
8722	182	8.1	3810	205	1.08	13	3810				HMS01.1N-W0070
11478	169	20.1	6228	193	2.89	14	6228				HMS01.1N-W0110
14229	156	37.3	6930	190	3.58	10	8376				HMS01.1N-W0150
18362	136	73.1	6930	190	3.58	5	10395				HMS01.1N-W0210
7621	187	4.8	1894	214	0.27	6	1894	22	130	200B-0120	HCS02.1E-W0054
8775	181	8.3	2195	212	0.36	4	2195				HCS02.1E-W0070
8722	182	8.1	5604	196	2.34	29	5604				HCS03.1E-W0070
10786	172	16.6	6930	190	3.58	22	7636				HCS03.1E-W0100
14229	156	37.3	6930	190	3.58	10	8921				HCS03.1E-W0150
18362	136	73.1	6930	190	3.58	5	10395				HCS03.1E-W0210
11258	161	12.9	4594	188	1.72	13	4594				HMS01.1N-W0070
15318	144	31.9	7509	176	4.59	14	7509				HMS01.1N-W0110
19370	127	59.2	8920	170	6.47	11	10749				HMS01.1N-W0150
25459	102	116.1	8920	170	6.47	6	13380				HMS01.1N-W0210
11337	160	13.2	2646	196	0.57	4	2646	23	120	200C-0090	HCS02.1E-W0070
11258	161	12.9	6757	179	3.71	29	6757				HCS03.1E-W0070
14299	148	26.3	8920	170	6.47	25	9659				HCS03.1E-W0100
19370	127	59.2	8920	170	6.47	11	11552				HCS03.1E-W0150
25459	102	116.1	8920	170	6.47	6	13380				HCS03.1E-W0210
12299	178	20.1	5880	201	2.89	14	5880				HMS01.1N-W0110
14996	168	37.3	8920	190	6.65	18	9259				HMS01.1N-W0150
19049	154	73.1	8920	190	6.65	9	11961				HMS01.1N-W0210
9650	188	8.3	2072	215	0.36	4	2072	30	175	200C-0120	HCS02.1E-W0070
11622	180	16.6	8068	193	5.44	33	8068				HCS03.1E-W0100
14996	168	37.3	8920	190	6.65	18	9794				HCS03.1E-W0150
19049	154	73.1	8920	190	6.65	9	12457		ļ		HCS03.1E-W0210
9992	217	13	3830	233	1.87	14	3830				HMS01.1N-W0110
12378	211	24.1	6296	227	5.05	21	6296				HMS01.1N-W0150
15962	202	47.3	8920	220	10.14	21	9693	46	210	200C-0170	HMS01.1N-W0210
12378	211	24.1	7063	225	6.36	26	7063				HCS03.1E-W0150
15962	202	47.3	8920	220	10.14		10309				HCS03.1E-W0210
12644	135	13.4	4802	161	1.78	13	4802				HMS01.1N-W0070
17000	121	33	7849	151	4.76	14	7849				HMS01.1N-W0110
21348	107	61.4	11120	140	9.55	16	12097				HMS01.1N-W0150
27881	85	120.4	11120	140	9.55	8	16453				HMS01.1N-W0210
12728	135	13.7	2766	168	0.59	4	2766	28	140	200D-0060	HCS02.1E-W0070
12644	135	13.4	7062	153	3.85	29	7062				HCS03.1E-W0070
15907	124	27.3	10769	141	8.96	33	10769				HCS03.1E-W0100
21348	107	61.4	11120	140	9.55	16	12959				HCS03.1E-W0150
27881	85	120.4	11120	140	9.55	8	16680				HCS03.1E-W0210
12455	176	18.9	4774	201	2.72	14	4774				HMS01.1N-W0110
15425	166	35.1	7849	191	7.35	21	7849	40	040		HMS01.1N-W0150
19888	151	68.8	11120	180	14.75	21	12082	46	210	200D-0100	HMS01.1N-W0210
15425	166	35.1	8805	188	9.25	26	88,5				HCS03.1E-W0150
19888	151	68.8	11120	180	14.75	21	12849		I		HCS03.1E-W0210

F _{MAX} [N]	V _{Fmax} [m/min]	P _{VMAX} [kW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation MLP	Control device
14233	181	28.5	6813	202	5.97	21	6813				HMS01.1N-W0150
18488	169	55.9	11009	190	15.59	28	11009	53	225	200D-0120	HMS01.1N-W0210
14233	181	28.5	7643	202	7.51	26	7643	55	225	2000-0120	HCS03.1E-W0150
18488	169	55.9	11120	190	15.9	28	11777				HCS03.1E-W0210
8043	154	8.8	4595	170	2.3	26	4595				HMS01.1N-W0054
9378	148	14.8	4259	171	1.97	13	4259				HMS01.1N-W0070
12751	132	36.6	6700	160	4.88	13	6825				HMS01.1N-W0110
16109	117	68	6700	160	4.88	7	8965				HMS01.1N-W0150
21156	94	133.3	6700	160	4.88	4	10050				HMS01.1N-W0210
8043	154	8.8	2117	181	0.49	6	2117	19	110	300A-0090	HCS02.1E-W0054
9452	148	15.1	2453	180	0.65	4	2453				HCS02.1E-W0070
9378	148	14.8	6264	162	4.26	29	6264				HCS03.1E-W0070
11907	136	30.2	6700	160	4.88	16	8061				HCS03.1E-W0100
16109	117	68	6700	160	4.88	7	9630				HCS03.1E-W0150
21156	94	133.3	6700	160	4.88	4	10050				HCS03.1E-W0210
7236	188	5.7	3804	203	1.48	26	3804				HMS01.1N-W0054
8299	183	9.6	3525	205	1.27	13	3525				HMS01.1N-W0070
10960	171	23.6	5762	194	3.4	14	5762				HMS01.1N-W0110
13617	158	43.9	6700	190	4.59	10	7965				HMS01.1N-W0150
17608	140	86	6700	190	4.59	5	10050				HMS01.1N-W0210
7236	188	5.7	1752	213	0.31	6	1752	23	138	300A-0120	HCS02.1E-W0054
8350	183	9.8	2031	211	0.42	4	2031				HCS02.1E-W0070
8299	183	9.6	5185	197	2.75	29	5185				HCS03.1E-W0070
10292	174	19.5	6700	190	4.59	24	7250				HCS03.1E-W0100
13617	158	43.9	6700	190	4.59	10	8491				HCS03.1E-W0150
17608	140	86	6700	190	4.59	5	10050				HCS03.1E-W0210
11694	136	12.9	4448	158	1.72	13	4448				HMS01.1N-W0070
15678	123	31.9	7270	150	4.59	14	7270				HMS01.1N-W0110
19655	111	59.2	10300	140	9.21	16	11194				HMS01.1N-W0150
25631	92	116.1	10300	140	9.21	8	15178				HMS01.1N-W0210
11771	135	13.2	2562	164	0.57	4	2562	28	140	300B-0070	HCS02.1E-W0070
11694	136	12.9	6542	152	3.71	29	6542				HCS03.1E-W0070
14678	126	26.3	9975	141	8.64	33	9975				HCS03.1E-W0100
19655	111	59.2	10300	140	9.21	16	11982				HCS03.1E-W0150
25631	92	116.1	10300	140	9.21	8	15450		ļ		HCS03.1E-W0210
12925	182	15.3	5816	204	2.21	14	5816				HMS01.1N-W0110
15546	174	28.5	9561	192	5.97	21	9561				HMS01.1N-W0150
19483	161	55.9	10300	190	6.93	12	12595	35	205	300B-0120	HMS01.1N-W0210
12267	184	12.7	7980	197	4.16	33	7980	- 55	205	3000-0120	HCS03.1E-W0100
15546	174	28.5	9905	191	6.93	22	10490				HCS03.1E-W0150
19483	161	55.9	10300	190	6.93	12	13273				HCS03.1E-W0210

F _{MAX} [N]	v _{Fmax} [m/min]	P _{VMAX} [KW]	F _{dN} [N]	v _N [m/ min]	P _{vN} [kW]	ED _{FMAX} [%]	F _{кв} [N]	I _{dN} [A]	I _{MAX} [A]	Primary part Standard - / Thermal encapsulation MLP	Control device
15040	107	6.7	5605	123	0.89	13	5605				HMS01.1N-W0070
20369	98	16.5	9162	117	2.38	14	9162				HMS01.1N-W0110
25688	89	30.7	13440	110	5.12	17	14372				HMS01.1N-W0150
33680	76	60.2	13440	110	5.12	9	19700				HMS01.1N-W0210
15144	107	6.8	3229	127	0.3	4	3229	29	140	300C-0060	HCS02.1E-W0070
15040	107	6.7	8244	119	1.93	29	8244				HCS03.1E-W0070
19032	101	13.6	12571	112	4.48	33	12571				HCS03.1E-W0100
25688	89	30.7	13440	110	5.12	17	15426				HCS03.1E-W0150
33680	76	60.2	13440	110	5.12	9	20160				HCS03.1E-W0210
16486	144	18.9	7183	163	2.72	14	7183				HMS01.1N-W0110
19860	137	35.1	11808	153	7.35	21	11808				HMS01.1N-W0150
24930	127	68.8	13440	150	9.52	14	16062	07	040	2000000	HMS01.1N-W0210
15638	146	15.6	9855	157	5.12	33	9855	37	212	300C0090	HCS03.1E-W0100
19860	137	35.1	13247	150	9.25	26	13247				HCS03.1E-W0150
24930	127	68.8	13440	150	9.25	14	16933				HCS03.1E-W0210

Fig. 10-3: Possible combination at parallel arrangement

11 Motor Dimensioning

11.1 General Procedure

The dimensioning of linear drives is mainly determined by the application-related characteristics of velocity and feed force. The basic sequence of sizing linear drives is shown in the figure below.

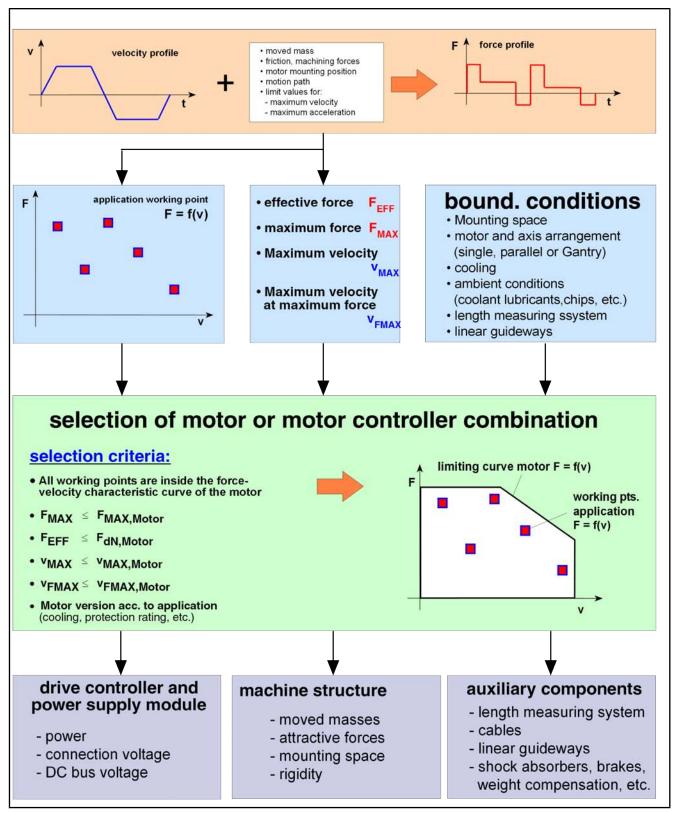


Fig.11-1: Basic procedure of sizing linear drives

11.2 Basic Formulae

11.2.1 General Movement Equations

The variables required for sizing and selecting the motor are calculated using the equations shown in the following.

When linear direct drives are configured, the process-related feed forces and velocities are used directly and without conversion for selecting the drive.

:у		$v(t) = \frac{s(t)}{dt}$
ration:		$\mathbf{a}(t) = \frac{\mathbf{v}(t)}{\mathbf{d}t}$
	F(t) = :	$\mathbf{a}(\mathbf{t}) \cdot \mathbf{m} + \mathbf{F}_{0}(\mathbf{t}) + \mathbf{F}_{P}(\mathbf{t})$
ve force:		$\mathbf{F}_{\text{eff}} = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} \mathbf{F}(t)^{2} dt}$
ge velocity:		$\mathbf{v}_{avg} = \frac{1}{T} \cdot \int_{0}^{T} \mathbf{v}(t) dt$
Path profile vs. time in Acceleration profile vs. Force profile vs. time in Moved mass in kg Base force in N Process or machining f Effective force in N Average velocity in m/s Time in s Total time in s	m time in m/s n N force in N	'S ²
	ration: reation: /e force: ge velocity: Velocity profile vs. time Path profile vs. time in Acceleration profile vs. Force profile vs. time in Acceleration profile vs. Force profile vs. time in Moved mass in kg Base force in N Process or machining f Effective force in N Process or machining f Effective force in N Average velocity in m/s Time in s Total time in s General equations of n	ration: F(t) = /e force: /e force: /e locity profile vs. time in m/s Path profile vs. time in m Acceleration profile vs. time in m/ Force profile vs. time in N Moved mass in kg Base force in N Process or machining force in N Effective force in N Average velocity in m/s Time in s

In most cases the mathematical description of the required positions vs. the time is known (NC-program, electronic cam disk). Using the preparatory function, velocity, acceleration and forces can be calculated. Standard software (such as MS Excel or MathCad) can be used for calculating the required variables, even with complex motion profiles.

R

The following Chapter provides a more detailed correlation for trapezoidal, triangular or sinusoidal velocity characteristics.

Feed Forces 11.2.2

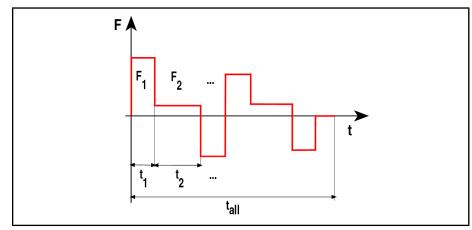
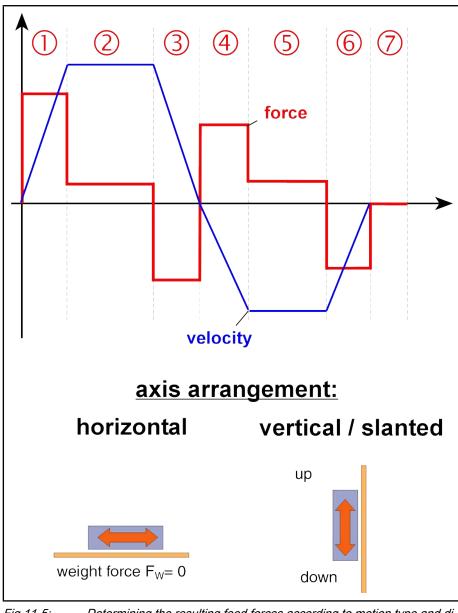



Fig.11-3: Determining the feed forces

<i></i>	g. 11-5. Determining the feet forces						
Accele	ration force :	$F_{ACC} = \mathbf{m} \cdot \mathbf{a}$					
Force	due to weight :	$\mathbf{F}_{W} = \mathbf{m} \cdot \mathbf{g} \cdot \sin \alpha \cdot (1 - \frac{\mathbf{f}_{cb}}{100})$					
Frictior	nal force:	$\mathbf{F}_{\mathbf{F}} = \boldsymbol{\mu} \cdot (\mathbf{m} \cdot \mathbf{g} \cdot \sin \boldsymbol{\alpha} + \mathbf{F}_{\mathbf{A}TT}) + \mathbf{F}_{0}$					
Maxim	um force :	$\mathbf{F}_{MAX} = \mathbf{F}_{ACC} + \mathbf{F}_{F} + \mathbf{F}_{W} + \mathbf{F}_{P}$					
Effectiv	/e force:	$\mathbf{F}_{EFF} = \sqrt{\frac{\mathbf{F}_1^2 \cdot \mathbf{t}_1 + \mathbf{F}_2^2 \cdot \mathbf{t}_2 + \dots}{\mathbf{t}_{all}}}$					
F _{ACC}	Acceleration force in N						
F _w	Force due to weight in	N					
F _F	Frictional force in N						
F ₀	Additional frictional or b	base force in N (e.g. by seals of linear guides)					
F _{MAX}	Maximum force in N						
F _{EFF}	Effective force in N						
F _P	Processing force in N						
а	Acceleration in m/s ²						
m	Moved mass in kg						
g	Gravitational accelerati						
~	Avia angol in dogrado (0°: horizontal avia: 00°C: vartical avia					

FACC	Acceleration force in N
Fw	Force due to weight in N
F _F	Frictional force in N
Fo	Additional frictional or base force in N (e.g. by seals of linear guides
F _{MAX}	Maximum force in N
F _{EFF}	Effective force in N
F _P	Processing force in N
а	Acceleration in m/s ²
m	Moved mass in kg
g	Gravitational acceleration (9.81 m/s ²)
α	Axis angel in degrees (0°: horizontal axis; 90°C: vertical axis
f _{CB}	Weight compensation in %
t _{all}	Total duty cycle time in s
F _{ATT}	Attractive force between primary and secondary part in N
μ	Friction coefficient
Fig.11-4:	Determining the feed forces

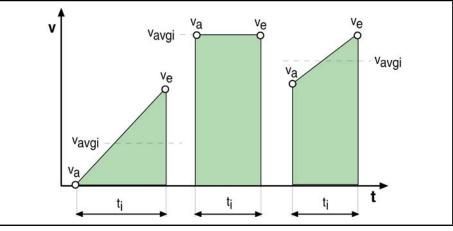
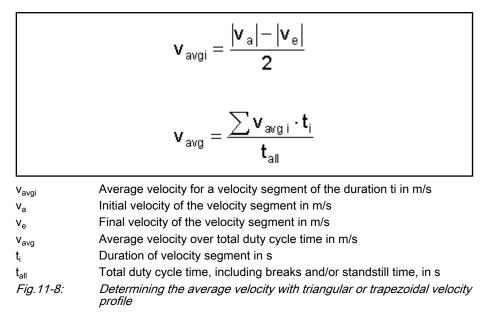
For sizing calculations of linear motor drives, the moved mass of the motor component must be taken into account (in particular, if the slide masses are relatively small). However, the moved mass and the attractive force between primary and secondary part are only known after the motor has been selected. Thus, first make assumptions for these variables and verify these values after the motor has been selected.

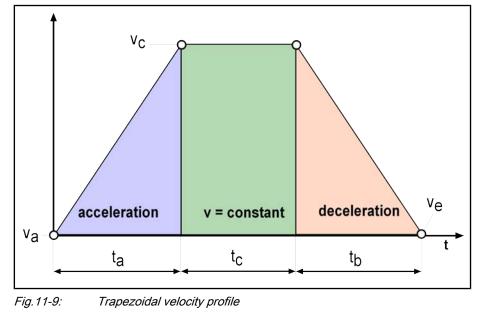
Determining the resulting feed forces according to motion type and direction

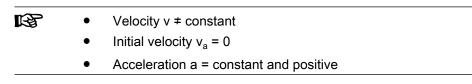
(1)	Acceleration (up) :	$\mathbf{F} = \mathbf{F}_{ACC} + \mathbf{F}_{F} + \mathbf{F}_{W}$					
(2)	Const. velocity (up) :	$\mathbf{F} = \mathbf{F}_{\mathbf{F}} + \mathbf{F}_{\mathbf{W}}$					
(3)	Deceleration (up) :	$\mathbf{F} = -\mathbf{F}_{ACC} + \mathbf{F}_{F} + \mathbf{F}_{W}$					
(4)	Acceleration (down) :	$\mathbf{F} = \mathbf{F}_{ACC} + \mathbf{F}_{F} - \mathbf{F}_{W}$					
(5)	Const.velocity (down) :	$\mathbf{F} = \mathbf{F}_{F} - \mathbf{F}_{W}$					
(6)	Deceleration (down) :	$\mathbf{F} = -\mathbf{F}_{ACC} + \mathbf{F}_{F} - \mathbf{F}_{W}$					
(7)	Idle time:	$F = F_W$					
F _{ACC}	Acceleration force in N						
Fw	Force due to weight in N						
F _F	Frictional force in N						
Fig.11-6:	Determining the resulting feed forces according to motion type and d rection						
R	With horizontal axis arrangement, the weight is $F_W = 0$.						
	Further directional base and process forces must be taken into ac count.						

11.2.3 Average Velocity

The average velocity is required for determining the mechanical continuous output of the drive. fig. 11-2 "General equations of motion" on page 181shows the general way of determining the average velocity. The following calculation can be used for a simple determination in trapezoidal or triangular velocity pro-files:

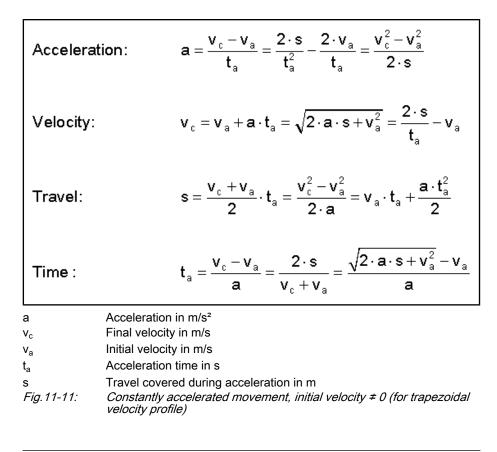



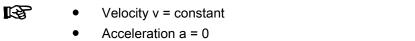

Fig. 11-7: Triangular or trapezoidal velocity profile

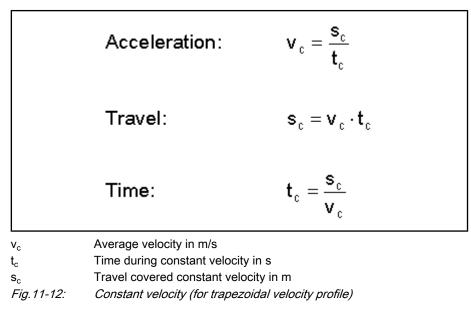

11.2.4 Trapezoidal Velocity

General Information

This mode of operation is characteristic for the most applications. An acceleration phase is followed by a movement of constant velocity up to the deceleration phase.


Acceleration, initial velocity = 0


Acceleration:		$\mathbf{a} = \frac{\mathbf{v}_{c}}{\mathbf{t}_{a}} = \frac{2 \cdot \mathbf{s}}{\mathbf{t}_{a}^{2}} = \frac{\mathbf{v}_{c}^{2}}{2 \cdot \mathbf{s}}$
Final velocity:		$\mathbf{v}_{c} = \mathbf{a} \cdot \mathbf{t}_{a} = \sqrt{2 \cdot \mathbf{a} \cdot \mathbf{s}} = \frac{2 \cdot \mathbf{s}}{\mathbf{t}_{a}}$
Travel:		$\mathbf{s} = \frac{\mathbf{v}_c}{2} \cdot \mathbf{t}_a = \frac{\mathbf{v}_c^2}{2 \cdot \mathbf{a}} = \frac{\mathbf{a} \cdot \mathbf{t}_a^2}{2}$
Time:		$t_a = \frac{v_c}{a} = \frac{2 \cdot s}{v_c} = \sqrt{\frac{2 \cdot s}{a}}$
а	Acceleration in m/s ²	
V _c	Final velocity in m/s	
t _a s	Acceleration time in s Travel covered during	
s Fig.11-10:		ed movement, initial velocity = 0 (for trapezoidal
≠ 0		


Acceleration, initial velocity ≠

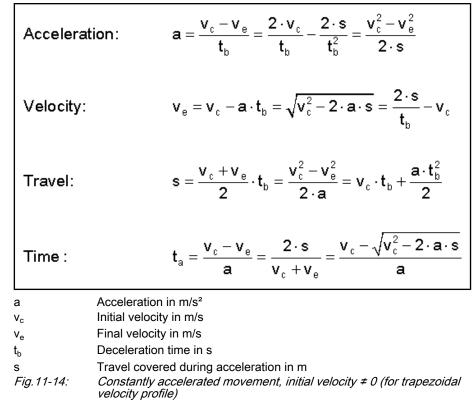
R	٠	Velocity v ≠ constant
	٠	Initial velocity v _a ≠ 0
	•	Acceleration a = constant and positive

Constant velocity

Brakes,	Final	Velocity = 0
---------	-------	----------------

R	٠	Velocity v ≠ constant
	•	Final velocity v _e = 0
	•	Acceleration a = constant and negative

and Controls


•

Motor Dimensioning

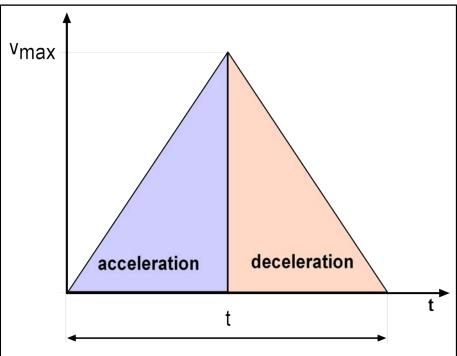
Brakes, Final Velocity = 0

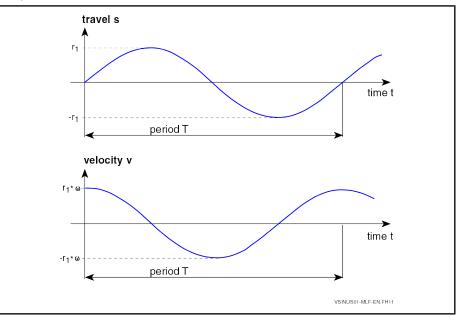
Acceleration:	$\mathbf{a} = \frac{\mathbf{v}_{c}}{\mathbf{t}_{b}} = \frac{2 \cdot \mathbf{s}}{\mathbf{t}_{b}^{2}} = \frac{\mathbf{v}_{c}^{2}}{2 \cdot \mathbf{s}}$
Velocity:	$\mathbf{v}_{c} = \mathbf{a} \cdot \mathbf{t}_{b} = \sqrt{2 \cdot \mathbf{a} \cdot \mathbf{s}} = \frac{2 \cdot \mathbf{s}}{\mathbf{t}_{b}}$
Travel:	$\mathbf{s} = \frac{\mathbf{v}_{c}}{2} \cdot \mathbf{t}_{b} = \frac{\mathbf{v}_{c}^{2}}{2 \cdot \mathbf{a}} = \frac{\mathbf{a} \cdot \mathbf{t}_{b}^{2}}{2}$
Time:	$\mathbf{t}_{\mathrm{b}} = \frac{\mathbf{v}_{\mathrm{c}}}{\mathbf{a}} = \frac{2 \cdot \mathbf{s}}{\mathbf{v}_{\mathrm{c}}} = \sqrt{\frac{2 \cdot \mathbf{s}}{\mathbf{a}}}$
a Acceleration in m/s ² v _c Final velocity in m/s t _b Deceleration time in s s Travel covered during <i>Fig. 11-13: Constantly accelerated</i> <i>velocity profile</i>)	acceleration in m d movement, initial velocity = 0 (for trapezoidal
 Velocity v ≠ const Final velocity v_e ≠ 	

Acceleration a = constant and negative

11.2.5 Triangular Velocity

In contrast to the trapezoidal characteristic, this velocity profile does not have a phase of constant velocity. The acceleration phase is immediately followed by the deceleration phase. This characteristic can frequently be found in conjunction with movements of short strokes.




Fig.11-15: Triangular velocity profile

Accele	ration:	$\mathbf{a} = \frac{2 \cdot \mathbf{v}_{\text{max}}}{\mathbf{t}} = \frac{4 \cdot \mathbf{s}_{\text{all}}}{\mathbf{t}^2} = \frac{\mathbf{v}_{\text{max}}^2}{\mathbf{s}}$
Velocit	y :	$\mathbf{v}_{\text{max}} = \frac{\mathbf{a} \cdot \mathbf{t}}{2} = \sqrt{\mathbf{a} \cdot \mathbf{s}_{\text{all}}} = \frac{2 \cdot \mathbf{s}_{\text{all}}}{\mathbf{t}}$
Travel:		$\mathbf{s}_{all} = \frac{\mathbf{v}_{max} \cdot \mathbf{t}}{2} = \frac{\mathbf{v}_{max}^2}{4 \cdot \mathbf{a}} = \frac{\mathbf{a} \cdot \mathbf{t}^2}{4}$
Time:		$\mathbf{t} = \frac{2 \cdot \mathbf{v}_{\text{max}}}{\mathbf{a}} = \frac{4 \cdot \mathbf{s}_{\text{all}}}{\mathbf{v}_{\text{max}}} = \sqrt{\frac{4 \cdot \mathbf{s}_{\text{all}}}{\mathbf{a}}}$
v _{max} a s _{all} t <i>Fig.11-16:</i>	Maximum velocity i Acceleration in m/s Total motion travel Positioning time in Determine triangula	s ² in m s

11.2.6 Sinusoidal Velocity

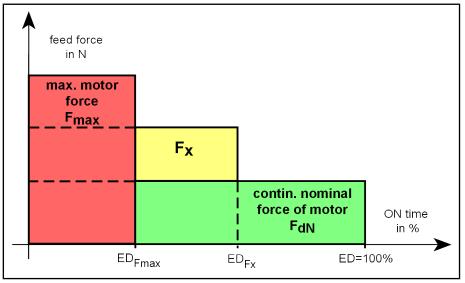
This velocity profile results, for example, from the circular interplation of two axes (circular movement) or the oscillating movement of one axis (grinding, for example).

The specified variables are chiefly the motion travel or the circle diameter and the period T.

Fig.11-17: Insert motion profiles of an axis at sinusoidal velocity.

Travel profile:	$s(t) = r_1 \cdot \sin(\omega \cdot t)$
Velocity profile :	$\mathbf{v}(t) = \mathbf{r}_1 \cdot \mathbf{cos}(\boldsymbol{\omega} \cdot t) \cdot \boldsymbol{\omega}$
Acceleration profile :	$\mathbf{a}(t) = -\mathbf{r}_{i} \cdot \sin\left(\omega t\right) \cdot \omega^{2}$
Jerk profile :	$\mathbf{r}(\mathbf{t}) = -\mathbf{r}_{1} \cdot \cos(\omega \mathbf{t}) \cdot \omega^{3}$ $\omega = \frac{2 \cdot \pi}{T} = 2 \cdot \pi \cdot \mathbf{f}$

Fig.11-18: Calculation formula for motion profiles of an axis at sinusoidal velocity. The following calculation bases on fig. 11-17 "Insert motion profiles of an axis at sinusoidal velocity." on page 190 and fig. 11-18 "Calculation formula for motion profiles of an axis at sinusoidal velocity." on page 191:


Maximum accerlation :		$\mathbf{a}_{\max} = \mathbf{r} \cdot \left(\frac{2 \cdot \pi}{T}\right)^2$
Maximum velocity :		$\mathbf{v}_{\max} = \mathbf{r} \cdot \frac{2 \cdot \pi}{\mathbf{T}}$
Averag	e velocity:	$\mathbf{v}_{avg} = \frac{2 \cdot \mathbf{v}_{max}}{\pi} = \frac{4 \cdot \mathbf{r}}{T}$
Accele	ration force :	$\mathbf{F}_{ACC} = \mathbf{a}_{max} \cdot \mathbf{m}$
Effective force :		$\mathbf{F}_{\text{EFF}} = \sqrt{\frac{\mathbf{F}_{\text{acc}}^2}{2} + \mathbf{F}_0^2}$
Vertical axis arrangement:		$F_{EFFv} = \sqrt{\frac{F_{acc}^2 + F_{0\ up}^2 + F_{0\ down}^2}{2}}$
Base fo	orce up movement:	$\mathbf{F}_{0 \text{ up}} = \mathbf{F}_{0} + \mathbf{F}_{w}$
	orce down movement:	$\mathbf{F}_{0 \text{ down}} = \mathbf{F}_{0} - \mathbf{F}_{w}$
a_{max} v_{max} r T m F_{ACC} F_{EFF} F_{EFF} F_{EFFv} F_0 F_W <i>Fig. 11-19:</i>	Maximum acceleration in m/s ² Maximum velocity in m/s Motion travel in one direction (Period in s Moved mass in kg Acceleration force in N Effective force in N Effektive force at vertical or inc Base force, e.g. frictional force Force due to weight in N <i>Calculation formulae for sinusc</i>	lined axis arrangement in N in N
Further directional base and process forces must additionally be taken into account.		

11.3 Duty Cycle and Feed Force

11.3.1 General Information

The relative duty cycle ED specifies the duty cycle percentage of the load with respect to a total duty cycle time, including idle time. The thermal load capacity of the motor limits the duty cycle. Capacity the motor with rated force is possible

over the entire duty cycle time. The duty cycle must be reduced at $F > F_{dN}$ (see fig. 11-20 "Correlation between duty cycle and feed force" on page 193) in order to not thermally overload the motor at higher feed forces.

Fig.11-20: Correlation between duty cycle and feed force

11.3.2 Determining the Duty Cycle

The approximate determination of the relative duty cycle ED_{ideal} is performed via the correlation:

	$ED_{ideal} = \left(\frac{F_{EFF}^2}{F_{MAX}^2}\right) \cdot 100$
ED _{ideal}	Cyclic duration factor in %
F _{EFF}	Effective force or rated force in N
F _{MAX}	Maximum feed force

Fig.11-21: Approximate determination of duty cycle ED

Prerequisites: Linear correlation between feed force and current.

For IndraDyn L motors acc. to fig. 11-21 "Approximate determination of duty cycle ED" on page 193, only an approximate duty cycle calculation is possible since there is a non-linear correlation between force and current.

This calculation is valid for a rough determination of possible duty cycle at shorttime duty forces with $F_{KB} \le 1.5 F_{dN}$.

You must check with fig. 11-22 "Determining the duty cycle ED" on page 194 or fig. 11-23 "Duty cycle vs. force for IndraDyn L synchronous linear motors" on page 194 to exactly determine the relative duty cycle of IndraDyn L linear motors.

The non-linearity of the characteristic curve force vs. current of synchronous linear motor leads to an increased rise of power loss at higher feed forces. This increased power loss leads – in particular at a high percentage of acceleration and deceleration processes – to a possible duty cycle that is reduced with respect to fig. 11-21 "Approximate determination of duty cycle ED" on page 193.

Use fig. 11-22 "Determining the duty cycle ED" on page 194 or fig. 11-23 "Duty cycle vs. force for IndraDyn L synchronous linear motors" on page 194 to determine exactly the possible relative duty cycle.

$$\mathsf{ED}_{\mathsf{real}} = \frac{\mathsf{P}_{\mathsf{vN}}}{\mathsf{P}_{\mathsf{AVG a}}} \cdot 100$$

ED_{real} Possible relative duty cycle in %

 $\mathsf{P}_{v\mathsf{N}}$ Maximum rated power loss of the motor in W (see Chapter 4 "Technical data")

Fig.11-22: Determining the duty cycle ED

Prerequisites: Duty cycle time ≤ Thermal time constant of motor

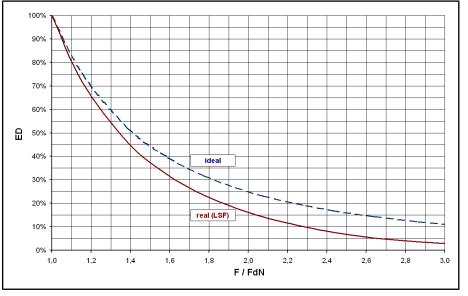


Fig.11-23: Duty cycle vs. force for IndraDyn L synchronous linear motors

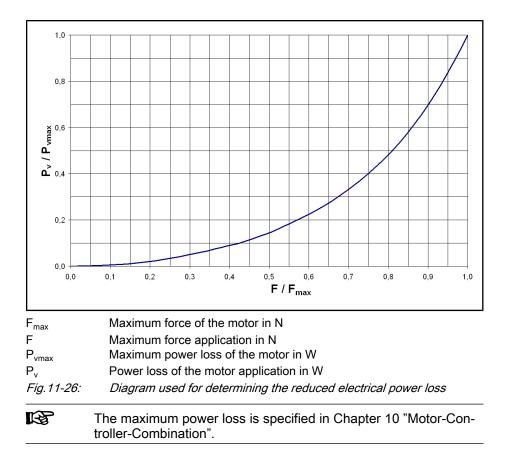
11.4 Determining the Drive Power

11.4.1 General Information

To size the power supply module or the mains rating, you must determine the rated (continuous) and maximum power of the linear drive.

Take the corresponding simultaneity factor into account when determine the total power of several drives that are connected to a single power supply module.

11.4.2 Rated Output


The rated output corresponds to the sum of the mechanical and electrical motor power.

Total ra	ated output: $P_c = P_{cm} + P_{ce}$	
Mecha	nical rated output: $P_{cm} = F_{eff} \cdot v_{avg}$	
Rated	electrical output: $P_{ce} = \left(\frac{F_{eff}}{F_{dn}}\right)^2 \cdot P_{vn}$ with $F_{eff} \leq F_{dn}$	
P _c	Rated power in W	
P _{cm}	Mechanical rated output in W	
P _{ce}	Electrical rated power loss of motor in W	
F_{eff}	Effective force in N (from application)	
V _{avg}	Average velocity in m/s	
F _{dn}	Rated force of the motor in N (see Chapter 4 "Technical data")	
P _{vn}	Rated power loss of the motor in W (see Chapter 4 "Technical data")	
Fig.11-24:	Rated power of the linear motor	
RF NF	The rated electrical output (see fig. 11-24 "Rated power of the linear motor" on page 195) is reduced when the rated force is reduced.	

11.4.3 Maximum Output

The maximum output is also the sum of the mechanical and electrical maximum output. It must be made available to the drive during acceleration and deceleration phase or for very high machining forces, for example.

Total maximum power:		$\mathbf{P}_{\text{max}} = \mathbf{P}_{\text{maxm}} + \mathbf{P}_{\text{maxe}}$
Mech	nanical maximum power:	$\mathbf{P}_{_{\text{maxm}}} = \mathbf{F}_{_{\text{max}}} \cdot \mathbf{v}_{_{\text{Fmax}}}$
P _{max}	Total maximum power in W	
P _{maxm}	Mechanical maximum power in W	
P _{maxe}	Electrical maximum power in W (see th	ne following diagram)
F _{max}	Maximum feed force in N	
V _{Fmax}	Maximum velocity with Fmax in N	
Fig.11-25:	Maximum power of the linear motor	
R R	When the maximum feed force is reduced, too. To determine the reduced put P_{maxe} use fig. 11-26 "Diagram used electrical power loss" on page 196.	trical maximum output P _{maxe} uced electrical maximum out-

11.4.4 Cooling Capacity

The necessary cooling capacity nearly corresponds to the motor's electrical continuous power loss.

Required	d cooling capacity: $P_{oo} = P_{oe} = \left(\frac{F_{eff}}{F_{dn}}\right)^2 \cdot P_{vn}$ with $F_{eff} \leq F_{dn}$
P _{co}	Required cooling capacity in W
P _{ce}	Electrical power loss of motor in W
F _{eff}	Effective force in N
F _{dn}	Rated force of the motor in N (see Chapter 4 "Technical data")
P _{vn}	Rated power loss of the motor in W (see Chapter 4 "Technical data")
Fig.11-27:	Required cooling capacity of the linear motor

11.4.5 Energy Regeneration

Compared with rotary servo motors, the energy of a linear motor during deceleration is lower. The translatory velocity of a linear motor is usually much lower than the circumferential speed of a rotary servo motor.

The regeneration energy of a synchronous linear drive results from the energy balance during the deceleration process. To size additional brake resistors or power supply units with feedback capability, it can be estimated as follows.

$$P_{R} = \frac{m \cdot v^{2}}{2 \cdot t_{b}} - \frac{v \cdot F_{R}}{2} - 1,5 \cdot m^{2} \cdot R_{12} \cdot \left(\frac{a_{max}}{k_{iFN}}\right)^{2}$$

$$P_{Ravg} = \frac{1}{T} \cdot \int_{0}^{T} P_{R}(t) dt = \frac{\sum P_{R,i} \cdot t_{bi}}{t_{all}}$$

$$P_{Ravg} = Average regeneration energy during a deceleration phase in W$$

$$P_{Ravg} = Average regeneration energy over total duty cycle time in W$$

$$m \qquad Moved mass in kg$$

$$v \qquad Maximum velocity in m/s$$

$$t_{b} \qquad Deceleration time in s$$

$$F_{R} \qquad Frictional force in N$$

$$R_{12} \qquad Winding resistance of the motor at 20°C in Ohm (see Chapter 4 Technical Data)$$

$$a_{max} \qquad Braking deceleration (negative acceleration) in m/s^{2}$$

$$k_{FN} \qquad Motor constant in N/A$$

$$t_{all} \qquad Total duty cycle time in s$$

$$Fig. 11-28: \qquad Regeneration energy of the linear motor$$

$$Prerequisites: Velocity-independent friction$$

$$Constant deceleration$$

If the regeneration energy that is determined according to fig. 11-28 "Regeneration energy of the linear motor" on page 197 is negative, energy is not fed back. This means that energy must be supplied to the motor during the deceleration process.

11.5 Efficiency

The efficiency of electrical machines is the ration between the motor output and the power fed to the motor. With linear motors, it is determined by the application-related traverse rates and forces, and the corresponding motor losses.

fig. 11-29 "Determining the efficiency of linear motors" on page 197 and fig. 11-30 "Efficiency vs. velocity for IndraDyn L synchronous linear motors." on page 198 can be used for determining and/or estimating the motor efficiency.

$$\eta = \frac{P_{\text{mech}}}{P_{\text{mech}} + P_{\text{V el}}} = \frac{F \cdot v}{(F \cdot v) + P_{\text{V el}}} = \frac{1}{1 + \frac{P_{\text{vel}}}{F \cdot v}}$$

$$n \qquad \text{Efficiency} \\ P_{\text{mech}} \qquad \text{Mechanical output in W} \\ P_{\text{Vel}} \qquad \text{Electrical power loss in W} \\ F \qquad \text{Feed force in N} \\ v \qquad \text{Velocity in m/s} \\ Fig.11-29: \qquad Determining the efficiency of linear motors}$$

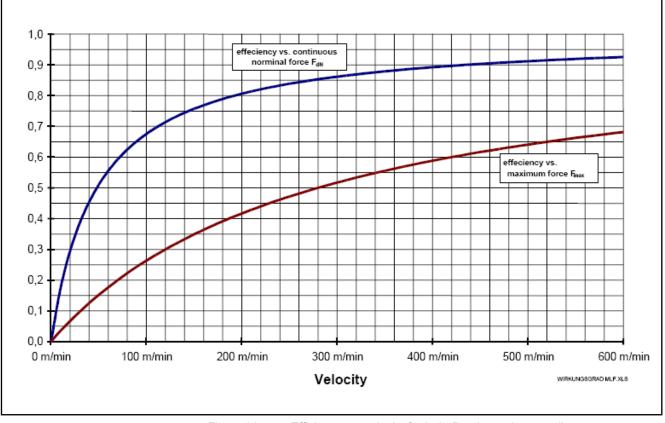


Fig. 11-30: Efficiency vs. velocity for IndraDyn L synchronous linear motors.

11.6 Sizing Examples

11.6.1 Handling axis

General Information

The example of a simple handling axis is used for describing the basic procedure of sizing a linear drive.

Specifications

The following data is specified: Slide mass: m_s = 52 kg Maximum velocity possible: 300 m/min Maximum acceleration possible: 50 m/s² Axis arrangement: horizontally, primary part moved Base force through energy chain, seals, linear guides, etc.: F_{zus} = 150 N (constant) Additional process forces: none Friction coefficient of linear guides: μ = 0.005 Rated connecting voltage: 3 x AC 400V Coolant temperature (water): $\vartheta_{coolant}$ = 25 °C Required positioning movements:

No.:	Stroke	Positioning time	Idle time after stroke	Comment
1	600 mm	0.32 s	0.20 s	Moving from start position to part pickup
2	-1,300 mm	0.50 s	0.20 s	Parts transport and deposit
3	700 mm	0.35 s	0.45 s	Moving back to start position

Fig.11-31: Required positioning movements of the handling axis

The mass of the primary part must be taken into account when the feed forces are determined. The attractive force between primary and secondary part is required additionally when the frictional force is determined. The following assumptions are made to start with:

Primary part mass: m_P= 32 kg

Attractive force: $F_{ATT} = 8,000 \text{ N}$

Check the calculations again when you have selected the motor.


Calculation

The following velocity and acceleration values are selected in order to maintain the required position times and specified limitations.

No.:	Stroke	Positioning time	Feed rate	Acceleration
1	600 mm	0.32 s	180 m/min	25 m/s²
2	-1,300 mm	0.50 s	220 m/min	25 m/s²
3	700 mm	0.35 s	185 m/min	25 m/s²

Fig. 11-32: Selected velocities and accelerations of the handling axes

When you select the position velocity and positioning acceleration, you should try to find an optimum ration for the motor selection (to reach a minimum effective force, for example).

$$F_{0} = F_{F} + F_{zus}$$

$$F_{0} = \mu \cdot (m_{ges} \cdot g + F_{ATT}) + F_{zus}$$

$$F_{0} = 0.005 \cdot (84 \text{ kg} \cdot 9.81 \text{ m/s}^{2} + 8000 \text{ N}) + 150 \text{ N}$$

$$F_{0} = 194 \text{ N}$$

Fig.11-34: Base force

 $F_{_{VV}}=0\,N$

Fig.11-35: Force due to weight

Fig.11-36: Acceleration force

$$\begin{aligned} \mathbf{F}_{\max} &= \mathbf{F}_{acc} + \mathbf{F}_{0} \\ \mathbf{F}_{\max} &= \mathbf{2100 N} + \mathbf{194N} \\ \mathbf{F}_{\max} &= \mathbf{2294 N} \end{aligned}$$

Fig.11-37: Maximum force

$$\label{eq:ges} \begin{split} t_{\text{ges}} &= 0.32 \ \text{s} + 0.2 \ \text{s} + 0.5 \ \text{s} + 0.2 \ \text{s} + 0.35 \ \text{s} + 0.45 \ \text{s} \\ t_{\text{ges}} &= 2.02 \ \text{s} \end{split}$$

Fig.11-38: Total time or duty cycle time

Velocity and Force Profile

The selected velocities and the determined forces provide the following velocity and force profile:

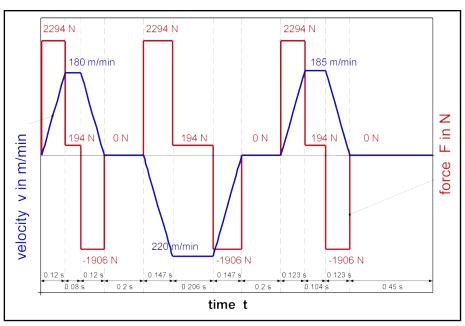


Fig. 11-39: Velocity and force profile of handling axis

The effective force and the average velocity are determined on the basis of the force profile:

No.:	Time t _{iin}	Force F _i in N		Average velocity v _{avg i} in m/ min
	8			11111
1	0.120	2,294	$F_i = F_{acc} + F_0$	90
2	0.080	194	$F_i = F_0$	180
3	0.120	-1,906	$F_i = -F_{acc} + F_0$	90
4	0.200	0		0
5	0.147	2,294	$F_i = F_{acc} + F_0$	110
6	0.206	194	$F_i = F_0$	220
7	0.147	-1,906	$F_i = -F_{acc} + F_0$	110
8	0.2	0		0
9	0.123	2,294	$F_i = F_{acc} + F_0$	92.5
10	0.104	194	$F_i = F_0$	185
11	0.123	-1,906	$F_i = -F_{acc} + F_0$	92.5
12	0.45	0 N		0

Fig.11-40: Force profile vs. time to determine the effective force

Effective Force and Average Velocity

$$F_{eff} = \sqrt{\frac{\sum (F_i^2 \cdot t_i)}{t_{ges}}} \qquad v_{avg} = \frac{\sum v_{avgi} \cdot t_i}{t_{ges}}$$
$$F_{eff} = 1313N \qquad v_{avg} = 77.1 \text{m/min}$$

Fig.11-41: Determine the effective force and average velocity

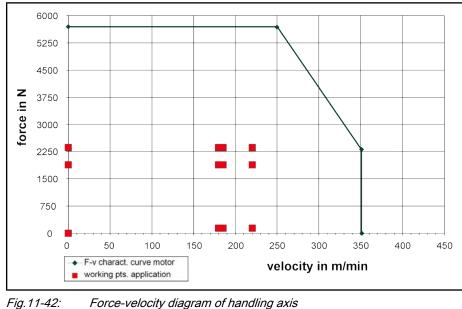
Selection of motor – controller combination

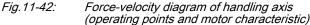
Once the application data has been calculated, an appropriate motor-controller combination can be selected.

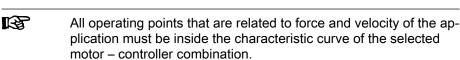
The standard encapsulation and the IndraDrive controller family are selected. Using the calculated data, the following combination is chosen from the selection data for motor-controller combinations (see Chapter 10):

The mass of the selected primary part MLP140C-0170-FS is slightly smaller

than the previous mass. The same applies to the attractive force. The selected


Motor: MLP140C-0170-FS-xxxx


Drive device: HMS01.1N-W150

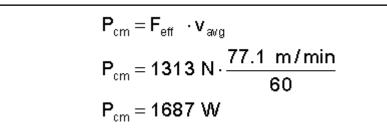

motor is retained within the scope of this example.

Verification of Mass and Attractive Force

Operation Points and Characteristic Curve of the Motor Using the profiles of velocity and force fig. 11-39 "Velocity and force profile of handling axis" on page 201), the operating points of the required feed forces and the necessary velocities can be determined. These operating points and the characteristics are shown in the Figure below.

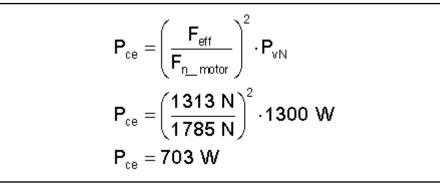
Selecting the secondary part segments

Based on the motion profile, the effective total motion path and, consequently, the required quantity and/or length of the secondary part segments can be determined. The effective total travel is 1300 mm; the length of the selected primary part is 510 mm.


$$f L_{sec \, ondary} \ge f L_{total \, travel} + f L_{primary}$$

 $f L_{secondary} = 1300 \, mm + 510 \, mm$
 $f L_{secondary} = 1810 \, mm$

Selecting the secondary part segments Fig.11-43: Required length of the secondary parts


Secondary part segments for IndraDyn L synchronous linear motors are available in a length of 150 mm, 450 mm and 600 mm.

Three secondary part segments of 600 mm each (total length of 1800 mm) are selected for the handling axes.

Power Calculation

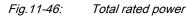


Fig.11-45: Rated electrical power loss

$\mathbf{P}_{c} = \mathbf{P}_{cm} + \mathbf{P}_{ce}$
$P_{c} = 1687 \text{ W} + 703 \text{ W}$
$P_c = 2390 W$

$$P_{maxm} = F_{max} \cdot v_{Fmax}$$
$$P_{maxm} = 2294 \text{ N} \cdot \frac{220 \text{ m/min}}{60}$$
$$P_{maxm} = 8412 \text{W}$$

Fig.11-47: Maximum output mechanical

fig. 11-26 "Diagram used for determining the reduced electrical power loss" on page 196 is used for determining the maximum electrical power loss. The ratio of required maximum force and maximum force of the motor is 2294 N / 5600 N = 0.41.

Thus, fig. 11-26 "Diagram used for determining the reduced electrical power loss" on page 196shows a reduction factor of 0.095 for the maximum power loss. Together with the specification of the maximum motor power loss from the selection charts for the motor-controller combination, the maximum electrical power loss results as

$$P_{maxe} = 0.095 \cdot P_{max motor}$$

 $P_{maxe} = 0.095 \cdot 60.84 \text{ kW}$
 $P_{maxe} = 5.78 \text{ kW}$

Fig.11-48: Maximum output electrical

$$P_{max} = P_{maxm} + P_{maxe}$$
$$P_{max} = 8.41 \text{ kW} + 5.78 \text{ kW}$$
$$P_{max} = 14.19 \text{ kW}$$

Fig. 11-49: Total maximum output

$$P_{co} = P_{ce} = 704 \text{ W}$$

Fig. 11-50: Cooling capacity

fig. 11-28 "Regeneration energy of the linear motor" on page 197 and the motor data in Chapter 4 "Technical data" are used for determining the regeneration energy for all deceleration phases.

$$\mathbf{P}_{\mathsf{R}i} = \frac{\mathbf{m} \cdot \mathbf{v}^2}{2 \cdot \mathbf{t}_{\mathsf{b}i}} - \frac{\mathbf{v} \cdot \mathbf{F}_{\mathsf{R}}}{2} - 1, \mathbf{5} \cdot \mathbf{m}^2 \cdot \mathbf{R}_{12} \cdot \left(\frac{\mathbf{a}_{\mathsf{max}}}{\mathbf{k}_{\mathsf{iFN}}}\right)^2$$

Fig.11-51: Regeneration energy

No.:	Braking time t _{bi}	Feed rate	Acceleration	Energy regeneration P _{Ri}
1	0.120 s	180 m/min	- 25 m/s²	1,678 W
2	0.147 s	220 m/min	- 25 m/s²	2,305 W
3	0.123 s	185 m/min	-25 m/s²	1,767 W

Fig.11-52: Regeneration energy during the deceleration phases

The average regeneration energy over the entire duty cycle time amounts to:

$$P_{Ravg} = \frac{\sum P_{Ri} \cdot t_{bi}}{t_{all}}$$
$$P_{Ravg} = 375 \text{ W}$$

Fig. 11-53: Average energy regeneration

Additional DC bus capacities (condensers) shall ensure that the axis is safely deactivate in the event of a power failure. The determination of the necessary additional capacity in the DC must be done according to the following example. The motor brakes with with maximum feed force, the minimum DC bus voltage should be 50V. The maximum velocity is 220 m/min is considered as worst case.

$$C_{add} = \frac{m_{ges} \cdot v_{max}}{U_{DC max}^{2} - U_{DC min}^{2}} \cdot \left[3.5 \cdot \frac{F_{max_motor}}{k_{iF}^{2}} \cdot R_{12} - v_{max} \cdot \left(\frac{F_{R}}{F_{max_motor}} + 0.3 \right) \right]$$

$$C_{add} = \frac{84 \text{ kg} \cdot 4.17 \frac{m}{s}}{(540 \text{ V})^{2} - (50 \text{ V})^{2}} \cdot \left[3.5 \cdot \frac{5600 \text{ N}}{\left(82 \frac{\text{N}}{\text{A}} \right)^{2}} \cdot 1.2 \ \Omega - 4.17 \frac{\text{m}}{\text{s}} \cdot \left(\frac{194 \text{ N}}{5600 \text{ N}} + 0.3 \right) \right]$$

$$C_{add} = 0.00242 \text{ F} = 2.4 \text{ mF}$$

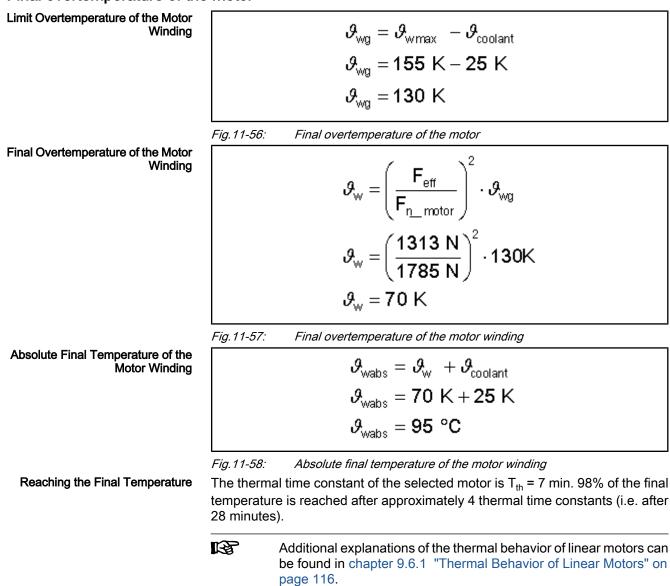
Fig.11-54: Determine the additional capacity

The maximum possible DC bus capacity of the employed power supply module must be taken into account when additional capacities are used in the DC bus.

Selection of linear scale

The linear scale can be selected when the effective total travel is known.

An open incremental linear scale of the LIDA187C type is selected for the handling axis. The selected system has distance-encoded reference marks.


Motor efficiency

The motor efficiency, related on the continuous output, results as follows:

Additional Capacities for Deactivation the Axis upon a Power Failure

$$\eta_{\rm c} = \frac{{\sf P}_{\rm cm}}{{\sf P}_{\rm cm} + {\sf P}_{\rm ce}} = \frac{1687 \text{ W}}{1687 \text{ W} + 703 \text{ W}}$$
$$\eta_{\rm c} = 0.706$$

Final overtemperature of the motor

11.6.2 Machine Tool Feed Axis; Dimensioning via Duty Cycle

General Information

Detailed information of the motion cycle are sometimes not available or are not exact. In the case of, e.g. small batch production and frequently changing port programs. Sizing of the drives is performed on the basis of the relative duty

cycle of different operating phases, and based on empirical values from machine manufacturers and/or machine users. The following example explains this procedure.

Specifications

The following data is specified: Slide mass including motor: m_s = 580 kg Velocity rapid travers: 120 m/min Velocity handling 15 m/min Maximum acceleration possible: 15 m/s² Axis arrangement: horizontally, primary part moved Motion path 800 mm Base force: F_0 = 600 N (constant) Maximum machining force: F_P = 1,200 N Friction coefficient of linear guides: μ = 0.005 Rated connecting voltage: 3 x AC 400V

Type of machining/movement	Share
Acceleration and declaration	10 %
Rapid traverse	20 %
Machining process	30 %
Standstill with machining	20 %
Standstill without machining	20 %
Total:	100 %

Fig.11-59: Percentage of individual machining processes and movements

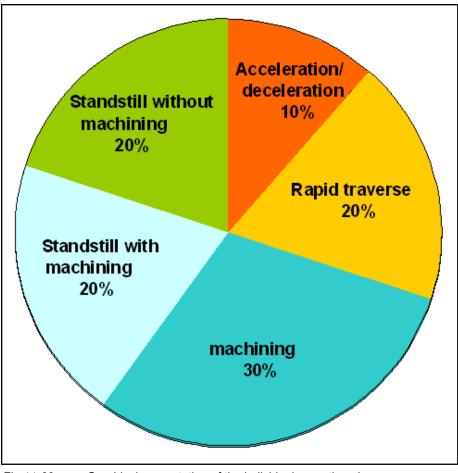


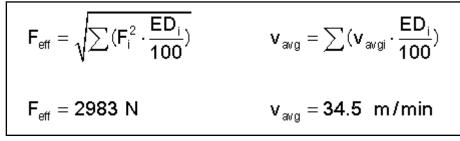
Fig. 11-60: Graphical presentation of the individual operating phases

Calculation

Fig.11-61: Acceleration force

$${f F}_{max} = {f F}_{acc} + {f F}_{0}$$

 ${f F}_{max} = {f 8700}\ {f N} + {f 600}\ {f N}$
 ${f F}_{max} = {f 9300}\ {f N}$


Fig.11-62: Maximum force

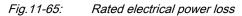
The effective force and the average velocity are determined on the basis of the specifications for the individual operating phases.

Type of machining/movement	ED _i		Force F _i	Average velocity v _{avgi}
Acceleration and declaration	10 %	8700 N	$F_i = F_{acc} \pm F_0$	60 m/min
Rapid traverse	20 %	600 N	$F_i = F_0$	120 m/min

Type of machining/movement	EDi	Force F _i		Average velocity v _{avgi}
Machining process	30 %	1800 N	$F_i = F_{P+}F_0$	15 m/min
Standstill with machining	20 %	1200 N	$F_i = F_P$	0 m/min
Standstill without machining	20 %	0 N		0 m/min

Fig.11-63: Percentage of individual machining processes and movements

Fig.11-64: Effective force and average velocity


Drive selection

The determined data can be used for selecting a motor-controller combination. The primary part with thermal encapsulation is selected for machine tool applications.

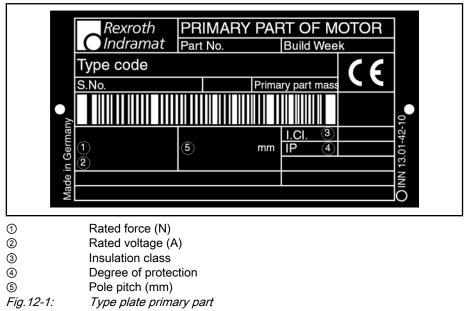
Primary part	MLP140C-0170-FS-N0CN-NNNN	
	F _{max_motor} : 10,000 N	
	F _{n_motor} : 3,150 N	
	v _{Fmax 750V} :170 m/min	
	v _{NENN 750V} : 250 m/min	
Secondary part segments	MLS140A-3A-xxxx-NNNN	
	Total traverse path + primary part length \approx 1,500 mm	
Drive device:	HMS01.1N-W0150	
Power supply module:	HMV (U_{DC} =750V, regenerative)	
Linear scale	Heidenhain LC481 encapsulated, absolute, ENDAT interface	

Determining the cooling capacity

$$P_{co} = P_{ce} = \left(\frac{F_{eff}}{F_{n_motor}}\right)^{2} \cdot P_{vN_motor}$$
$$P_{co} = \left(\frac{2983 \text{ N}}{3150 \text{ N}}\right)^{2} \cdot 3400 \text{ W}$$
$$P_{co} = 3050 \text{ W}$$

The maximum temperature rise at the contact surface of the primary part should not exceed 3 K. The necessary coolant flow in L/min is determined according to:

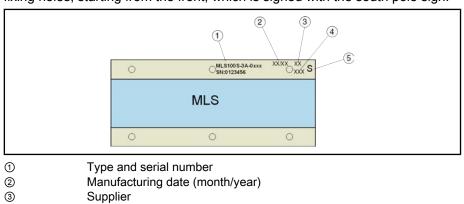
$$Q = \frac{P_{co} \cdot 25200}{c \cdot \rho \cdot \Delta T_{m}}$$
$$Q = \frac{3050 \text{ W} \cdot 25200}{4183 \frac{J}{\text{kg} \cdot \text{K}} \cdot 988, 3 \frac{\text{kg}}{\text{m}^{3}} \cdot 3 \text{ K}}$$
$$Q = 6.2 \quad \frac{1}{\text{min}}$$


Fig.11-66: Required coolant flow

The way of determining the drive power and other more detailed data are not discussed within the scope of this example.

12.1 Identification of the Motor Components

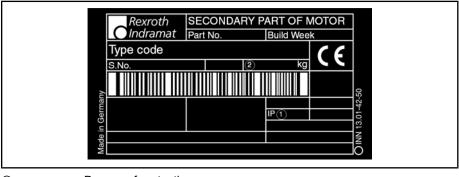
12.1.1 Primary Part

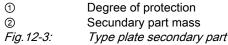

On the front of the primary part, on which the connection for the power cable and coolant is arranged, a type plate is fixed. The type plate makes a definite identification of the primary part possible. An additional type plate is attached to the primary part. This type plate can be attached to the machine or can be used otherwise. The type plate of the primary part contains the following data:

12.1.2 Secondary Part

On the secondary part can no type plate brought on, because for lack of space. Two identical type plates are attached to the secondary part at delivery. To ensure a safe and permanent identification of the type, the type designation and the serial number are fixed directly on the secondary part.

The type designation and the serial number is located between the first both fixing holes, starting from the front, which is signed with the south pole sign.


④ Number of measurement report


5

- Pole designation "S" (for south pole)
- Fig. 12-2: Position of the type designation and serial number of the secondary part

Each secondary part has a magnetic north pole, unless the length of a front and on the opposite side, a magnetic south pole on the front. The secondary parts are signed with "S" (south pole) on one front

Type Plate The type plate of the secondary part contains the following data:

12.2 Delivery Status and Packaging

ſ

12.2.1 Primary Parts

The primary parts are separately packed in a wooden box. To identify the primary part, a type designation exist on the packaging.

12.2.2 Secondary Parts

The secondary parts are separately packed in a cardboard box. To identify the secondary part, a type designation exist on the packaging.

Warnings on the packaging of the secondary parts

On the packaging of the seconardy parts, a self-adhesive warning label with the following warnings:

	WARNING	A WARNUNG
me me	alth hazard to people with heart pacemakers, stal implants and hearing aids when in proximity these parts!	Gesundheitsgefahr für Personen mit Herzschrittma- chern, metallischen Implantaten oder Splittern und Hörgeräten in unmittelbarer Umgebung dieser Teile!
	rong magnetic fields due to permanent motor agnets!	Starkes Magnetfeld durch Permanentmagnete der Motorteile!
	 Anyone with pacemakers, metal implants or hearing aids are not permitted to approach or to handle these motor parts. 	Personen mit Herzschrittmachern, metallischen Implantaten oder Hörgeräten dürfen sich nicht diesen Motorteilen nähern oder damit umgehen.
=	 If you have such conditions, consult with a physician prior to handling these parts. 	Besteht die Notwendigkeit f ür solche Personen, sich diesen Teilen zu n ähern, so ist das zuvor von einem Arzt zu entscheiden.
	CAUTION	
	zardous to fingers and hands due to high ractive forces of permanent motor magnets! rong magnetic fields due to permanent motor agnets!	Quetschgefahr von Finger und Hand durch starke Anziehungskräfte der Magnete! Starkes Magnetfeld durch Permanentmagnete der Motorteie!
		Nur mit Schutzhandschuhen anfassen. Vorsichtig handhaben.
Ha	zardous to sensitive parts!	Zerstörungsgefahr empfindlicher Teile!
	 Keep watches, credit cards, identification cards with magnetic strips, magnetic tape and ferromagnetic material (such as iron, nicke). 	⇒ Uhren, Kreditkarten, Scheckkarten und Ausweise mit Magnetstreifen sowie alle ferromagnetische Metallteile wie Eisen, Nickel und Cobalt von den

Fig. 12-4:

Warning label on the packaging of MLS secondary parts

R

The self-sticking warning label (sizes approx. 110 mm x 150 mm) can be ordered from Rexroth (MNR R911278745).

12.3 Transport and Storage

12.3.1 Transport

Do the transport and storage of primary and secondary parts in the original packaging, in which the parts were delivered from Bosch Rexroth. Remove the parts from the packaging only then, when the mounting of the parts on the installation place is already done.

The permittable **transport temperature is -20 ... +80 °C**. Strong or periodic temperature variations during the transport are not permitted.

R ²	Keep the packaging for later use (retrofitting of the machine, rede-
	livery, etc.).

Transport Primary Part Depending from size and weight of the primary part, it is not possible to transport it by hand. In such cases, a suitable lifting device should be available.

To move the primary part in horizontal position, transport it with ring screws, for example. Heed the thread dimensions within the dimension sheet of the primary part.

Risk of injury and / or damage when using primary parts!

 \Rightarrow Use both outer threaded holes on every front to screw in the ring screws.

 \Rightarrow Screw in the ring screws by hand so far, until the ground of the fastening threas is reached or the contact surface of the ring screws lies on the primary part.

 \Rightarrow Use 4 lifting belts for transport to reach a consistant load on the threaded holes and to avoid tilting of the primary part during transport.

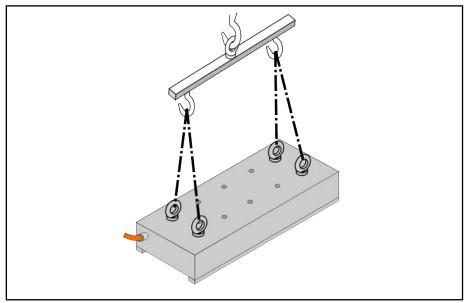
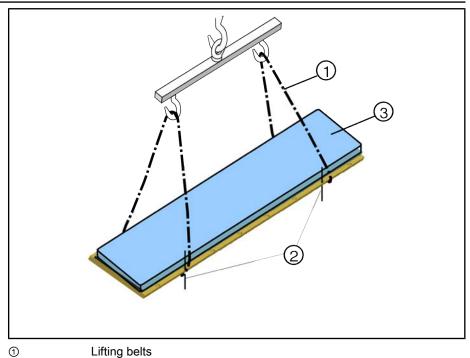



Fig.12-5:

Transport of a primary part (example)

Transport the Secondary Part	Risk of injuries and / or damage when handling secondary parts of syn- chronous linear motors!
CAUTION	\Rightarrow Heed the safety notes and warnings (refer to fig. 12-4 "Warning label on the packaging of MLS secondary parts" on page 212) when using secondary parts and make sure that they are kept.
	\Rightarrow Remove the transport or assembly protection which is stuck on the cover plate only when or after mouning into the machine.
	Depending from size and weight of the secondary part, it is not possible to transport it by hand. Due to the strong magnetic field around the secondary part, use anti-magnetic lifting devices.
	We recommend to use lifting belts to transport the secondary part.
Safety on the Lifting Belts during Transport	To avoid that the lifting belts slip together during transport, lock them. Therefore, two fastening screws for the secondary part can be connected into the appropriate hole on the secondary part (see fig. 12-6 "Transport of a secondary part (example)" on page 214). Heed a sufficient excess length of the lock on the lower side of the secondary part.
A	Risk of injury and / or damage when using secondary parts!
	\Rightarrow Use an antimagnetic lock during transport of the secondary parts with lifting belts. This lock avoids a possible slip of the lifting belts during transport.
CAUTION	

Lifting belts

2

3

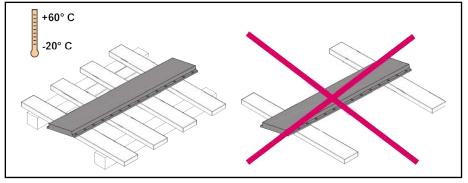
Lock against slipping together of the lifting belts

Stuck on transport and assembly protection

Fig. 12-6: *Transport of a secondary part (example)*

Further Features about Transport of Secondary Parts

The secondary parts of synchronous linear motors are equipped with permanent magnets, which are not magnetic shielded. The safety notes have to be absolutely adhered.


Possible influence of plane electronic on board through magnet fields!

 \Rightarrow Heed the packaging and transport instructions (IATA 902)

12.3.2 Bearing

Storage of Primary and Secondary Parts Preferably use the original package to store the parts. If this is not possible under certain circumstances, store the primary and secondary parts of synchronous linear motors on a plain base. This must be ensured even at short time storage.

The permittable **transport temperature is -20 ... +60 °C**. Strong or periodic temperature variations during the storage are not permitted.

Fig. 12-7: Storage of linear motor components

Inappropriate handling during storage or transport can damage or destroy the motor components!

- \Rightarrow Use the original packaging for permanent storage.
- \Rightarrow Short-term storage during installation acc. to fig. 12-7 "Storage of linear motor components" on page 215.
- \Rightarrow Do not throw parts.
- \Rightarrow Adhere permissible transport and storage temperatures.
- \Rightarrow Remove the transportation and installation protection only during or after the installation into the machine.

12.4 Checking the Motor Components

12.4.1 Factory Checks of the Motor Components

Electrical inspections

The Bosch Rexroth linear motors undergo the following electrical checks at the factory:

The Bosch Rexroth linear motors undergo the following mechanical tests:

- High-voltage test acc. to EN 60034-1/2.95 (VDE 0530 Part 1)
- Insulation resistance test acc. to EN 60204-1
- Verification of the specified electrical characteristics

Mechanical inspections

- Form and location tolerances acc. to ISO 1101
- Construction and fits acc. to DIN 7157
- Surface structure acc. to DIN ISO1302
- Thread test acc. to DIN 13, Part 20
- Leak test of the cooling circuit

 EMV radia interference suppression
 Each motor is accompanied by a corresponding test certificate.

 The linear motor components of Bosch Rexroth have been subjected to an EMV type test and have been certified as complying

EN 55011 Limit Class B, VDE 0875 Part 11

12.4.2 Incoming Inspection by the Customer

You must contact Bosch Rexroth, if you wish to perform a high-voltage incoming test at customer side.

- Destruction of motor components due to improperly or repeatedly executed high-voltage inspection!
- ⇒ Contact Bosch Rexroth before carrying out tests!

13 Assembly

13.1 Basic Precondition

Basic precondition for mounting the IndraDyn L components is the keeping of the following basic preconditions:

- Observation of the necessary installation sizes (see fig. 5-1 "Mounting Sizes and Tolerances" on page 49)
- Machine construction fulfills the requests for mounting (stiffness, attractive force, feed force and acceleration force, etc.)
- Machine construction is prepared for mounting of all components
- Clean screw-on surfaces between machine and motor components
- Mounting is done by trained personal
- Compliance of danger and safety notes is guaranteed.

13.2 General Procedure at Mounting of the Motor Components

13.2.1 General Information

The installation of the motor into the machine construction depends on the arrangement of the secondary part and can be done in different ways.

- Installation at **spanned** secondary parts over the entire traverse path
- Installation at whole secondary part over the entire traverse path

The described procedures are only suggestions and can be done user-specific in other forms.

13.2.2 Installation at Spanned Secondary Parts over the entire Traverse Path

Installation for a spanned secondary part can be done, as shown in fig. 5-1 "Mounting Sizes and Tolerances" on page 49. Thereby, only a part of the secondary part is installed, so that the primary part can be laid on the machine bed.

Do not lay the primary part directly on the secondary part!

 \Rightarrow Lift-off of the primary part from the secondary part is difficult because of high attractive forces (apparatus necessary).

The assembly of the primary part into the installed slide can be done now. Afterwards, the slide with installed primary part can be pushed over the installed secondary parts. Then, all the remaining secondary parts can be installed.

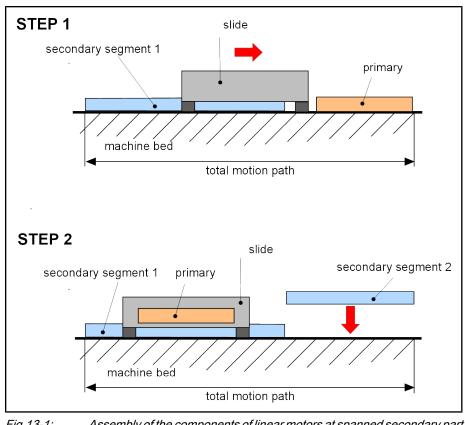
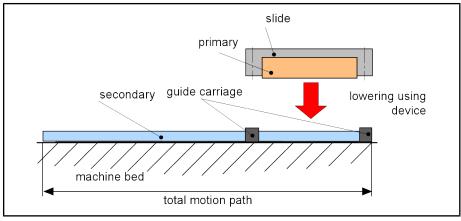
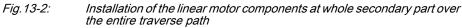
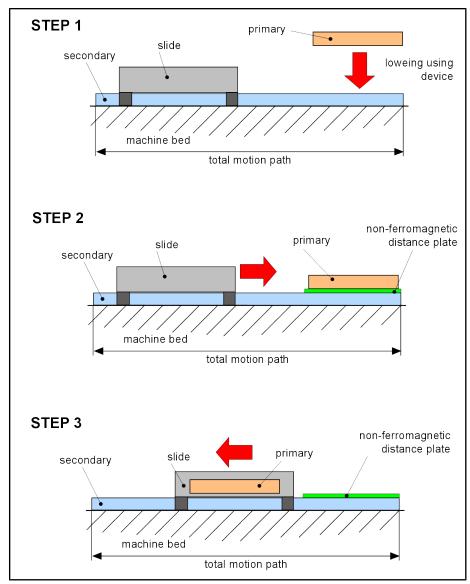


Fig. 13-1: Assembly of the components of linear motors at spanned secondary part




Uncontrolled movement of the slide!

⇒ Safety against uncontrolled movements by partial covering of primary and secondary parts (force in traverse direction).


Installation at Whole Secondary Part over the Entire Traverse Path 13.2.3

At whole secondary part over the entire traverse path can the primary part be installed into the prepared slide. After mounting the secondary part, the slide with prepared primary part can be lowered on the machine bed via a suited apparatus

The apparatus for lowering the primary part and the slide is not in the scope of delivery of Bosch Rexroth.
When lowering the primary part on the secondary part, result by reduc- ing the air gap increasing attractive forces!
\Rightarrow Heed the specifications in chapter 9.5 "Feed and Attractive Forces " on page 111.
\Rightarrow Do not lower the primary part on the secondary part with a crane (elasticity / attractive force).
Another possibility is, to lay the primary part on the installed secondary part – with a suited apparatus – and to screw it with fastening screws on the slide. Thereby, a non-ferromagnetic distance plate (made of plastic or wood) has to be laid among the primary and secondary part so that the primary part does not bear on the secondary part directly. The thickness of the distance plate should be measured according to < nominal air gap. After the fastening of the primary part on the slide a moving of the slide should be possible.
The thickness of the distance plate must be measured in such a way that the primary part with the fastening screws can preferably not or only exiguously be lifted.
Measurable air gap: 1.0 mm
Thickness of the distance plate: 0.950.99 mm
The tightening of the fastening screws for the primary part has to be made as described in chapter chapter 13.4 "Installation of the Primary Part" on page

Fig. 13-3: Installation of the linear motor components at whole secondary part over the entire traverse path

13.3 Installation of Secondary Part Segments

Personal injury and / or damage of motor components!

 \Rightarrow Remove the transport and installation protection of the secondary part only after mounting of the secondary parts.

ß	To fasten the secondary parts, it is only allowed to use new, unused screws.
	Tighten all screws with the necessary tightening torque (see fig. 13-4 "Fastening screws with tightening torque for the secondary parts MLS" on page 221). Additionally secure the screw connection with Loctite 243. Therefore note the correct screw locking in chapter 13.7 "Screw Locking " on page 226 at the end of this chapter.

The screw-on surfaces must be cleaned and be free of grease before the secondary parts can be screwed on the machine construction. Certain influences occured during the operation of the motor, e.g. contact of the secondary part with coolants, grinding-emulsion, etc. can reduce the sliding friction between the screw-on parts during the lifetime of the machine. For such cases, we recommend to use fastening screws of a higher property class, e.g. 10.9 to realize a higher tightening torque.

The tightening torque of the specific fastening screws are given as follows:

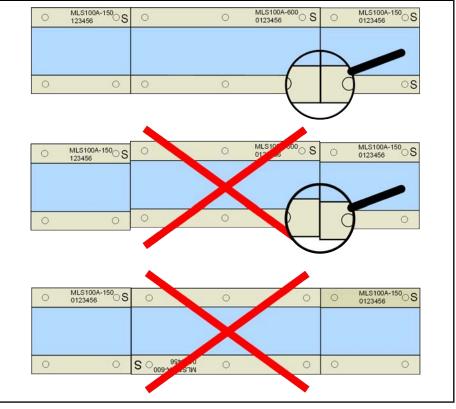
Frame size Secondary part	Bolt size- ISO-grade	Property class	Tightening torque (+/-10 %)
040200	MG (DIN 7094 plain halt haad)	8.8	10 Nm
040200	200 M6 (DIN 7984, plain bolt head)		15 Nm
300	M8 (DIN EN ISO 4762)	10.9	37 Nm

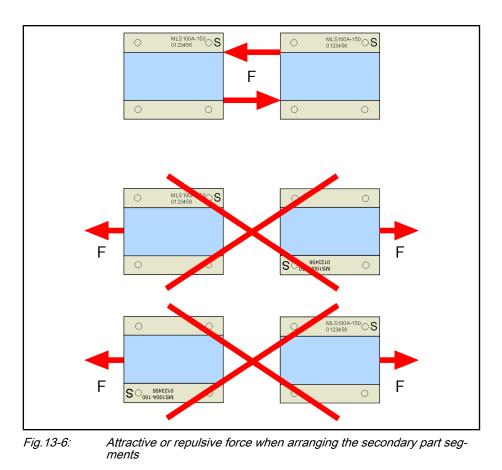
Fig.13-4: Fastening screws with tightening torque for the secondary parts MLS

The calculation of the screw connection to fasten the secondary parts is based on the presumption that both, the screw-on surfaces of the secondary part and on the machine are cleaned and the secondary part is directly screwed with the machine (see fig. 9-41 "Cooling concept for thermal encapsulation" on page 119).

		In certain cases, the secondary part cannot be screwed di- rectly with the machine, because additional materials like dis- tance plates, heat-conductive paste etc. are between the secondary part and the machine. Therefore, a sufficient prop- erty of the screw-connection must be ensured by the machine manufacturer.
	•	The effect of liquid screw locking is damaged due to loosening or re-tightening of the screws (e.g. due to torque check) and must be carried out again. Notes regarding correct execution of the screw locking can be found in chapter 13.7 "Screw Locking " on page 226.
Spanned secondary part	ger of damag	and / or uncontrolled movement of the motor result in dan- e or risk of injury! angement of the secondary part segments.

Using several arranged secondary part segments over the entire traverse path, the pole series and the aligned adjustment must be kept according to the following figure.




Fig. 13-5: Arrangement of several secondary parts

Risk of injury or damage by attractive force or repulsive force when arranging the secondary part segments!

- ⇒ Safety against uncontrolled movement
- $\Rightarrow~$ Remove the transportation and installation protection only during or after the installation into the machine.

Attractive or repulsive forces can be approx. 300 N differing from the size, when arranging the secondary part segments.

13.4 Installation of the Primary Part

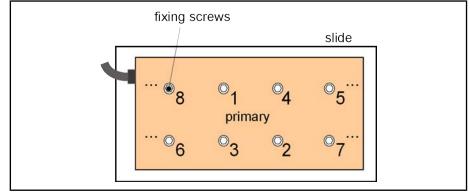


Fig. 13-7: Order of tightening the fastening screws of the primary part

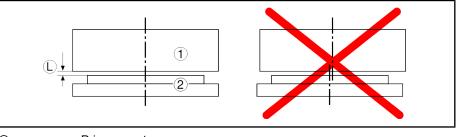
The screw-on surfaces must be cleaned and be free of grease before the primary part can be screwed on the machine construction. Certain influences occured during the operation of the motor, e.g. contact of the primary part with coolants, grinding-emulsion, etc. can reduce the sliding friction between the screw-on parts during the lifetime of the machine. For such cases, we recommend to use fastening screws of a higher property class, e.g. 10.9 to realize a higher tightening torque.

Mounting instructions:

1. Prepare threaded holes and screws (procedure see chapter 13.7 "Screw Locking " on page 226).

- 2. Fasten the primary part with screws 1, 2, 3...x until the primary part lies on the slide.
- 3. Fasten screws 1, 2, 3 ... x with nominal tightening torque:

Frame size Primary part	Bolt size- ISO-grade	Property class	Tightening torque (+/-10 %)	
040 200	M6 (DIN 7984, plain bolt head)	8.8	10 Nm	
040300		10.9	15 Nm	
Fig. 13-8:Nominal tightening torque for the fastening screws of the primary parts				


The effect of liquid screw locking is damaged due to loosening or re-tightening of the screws (e.g. due to torque check) and must be carried out again. Notes regarding correct execution of the screw locking can be found in chapter 13.7 "Screw Locking " on page 226.

13.5 Air-gap, Parallelism and Symmetry among the Motor Components

Parallelism and Symmetry

When mounting primary and secondary parts, their position is specified by the holes or threads within the machine slide and within the machine bed (seefig. 5-2 "Parallelism and symmetry between the fastening holes for the primary part and the fastening threads for the secondary part" on page 50).

As a small tolerance exists within the holes of the screw connections, the parts must be averaged and arranged according to fig. 13-5 "Arrangement of several secondary parts" on page 222 before the screws are finally tightened.

Primary part
 Secondary part

② Secondary part(L) Air gap

Fig. 13-9: Aligning the motor components

Air gap

We recommend after mounting the motor components, to check the minimum necessary air gap between primary and secondary part.

Therefore, a test strip made of antimagnetic material (aluminum, plastics etc.) of a thickness of

- 0.5...0.55 mm (for frame size 040...200)
- 0.7...0.75 mm (for frame size 300)

must be inserted into the air gap between primary and secondary part. The test strip must be freemoving on each point within the whole traverse path of the air gap.

With this measure, you will prevent that the minimum necessary air gap exists between the motor parts.

Furthermore, with this test you will detect a faulty assembly (e.g. due to dirt unter the mounting surface, faulty installation dimension, unsufficient machine rigidity etc.) in time.

Motor damage due to unsufficient air gap between primary and secondary part!

Immediately check the necessary minimum air gap between primary and secondary part after the assembly of both motor components by means of the aforementioned measures.

13.6 Connection Liquid Cooling

Connection of the liquid cooling is made by standard threads directly on the primary part.

Fittings and coolant pipes are not in the scope of delivery of the linear motor.

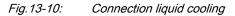
Tightening torqueThe indicated tightening torque (see fig. 13-10 "Connection liquid cooling" on
page 225) of the thread on the motor should not be exceeded.

Heed that depending on the form of the selected connection thread, the value possibly cannot be used, but rather be reduced to do not damage the connection thread.

Observe the information of the manufacturer of the selected connection thread, especially the details about the permitted tightening torque.

The motor-sided coolant connections are designed for coolant connection threads with axial sealing.

Bosch Rexroth recommends to use connection threads, which contain an O-Ring for axial sealing of the screw connection.


Not suited is a sealing using hemp bred, teflon tape or even with conical threads as this kind of sealing can stress and/or even damage the connection thread on the motor

The impermeability of the coolant connection is in the responsibility of the machine manufacturer and has to be tested and acceptet by him after installing the motor.

Furthermore, a regular test of correct state of the coolant connection should be stored in the maintenance plan of the machine.

The following connection data have to be kept. Exceeding the tightening torque or depth of engagement can lead to irreversible motor damage.

	Thread on the motor side		
Primary part with	Thread	Tightening torque	Depth of thread
Standard encapsula- tion		may 20 Nm	max. 12 mm
Thermal encapsula- tion	G1/4	max. 30 Nm	111dX. 12 11111

13.7 Screw Locking

13.7.1 General Information

General Information

LOCTITE is a plastic adhesive, which is applied to the installation parts in liquid form. The adhesive remains liquid as long as it is in contact with oxygen. Only after the parts have been mounted, it converts from its liquid state into hard plastic. This chemical conversion takes place under exclusion of air and the produced metallic contact. The result is a form-fitting connection that is impactand vibration-resistant. Sie ist stoß- und vibrationsfest. The hardening accelerator Activator 7649 reduces the hardening time of the adhesive.

Gluing Proceed as follows:

- 1. Clean metal shavings and coarse dirt from threaded hole and screw or grub screw.
- 2. Use LOCTITE rapid cleanser 7061 to clean oil, grease and dirt particles from threaded hole and screw/grub screw. The threads have to be absolutely restless.
- 3. Spray LOCTITE activator into the threaded hole and let it dry.
- 4. Use LOCTITE adhesive to moisten the same threaded hole in its entire thread length thinly and evenly.
- 5. Screw in the matching screw/grub screw.
- 6. Allow join to harden. Hardening times see fig. 13-11 "Hardening times LOCTITE adhesive" on page 226.

13.7.2 Securing Screwed Connections using LOCTITE in Tapped Blind Holes

The adhesive must always be dosed into the tapped hole, never on the screw. This prevents that the compressed air extrudes the adhesive when the screw or grub screw is screwed in.

	Hardened	Hard to the touch without activator	Hard to the touch with activator 7649
LOCTITE 243	≈ 12 h	1530 min	100.20 min
LOCTITE 620	≈ 24 h	12 h	1530 min
NOTE: All values refer to the hardening time at room temperature. The times are shorter when heat is added.			
Fig 13-11: Hardening times LOCTITE adhesive			

Fig.13-11: Hardening times LOCTITE adhesive

LOCTITE 620 is heat-resistant up to 200 °C, LOCTITE 243 up to 150 °C.

Detach the connection To detach the connection, use a wrench for unscrewing the screw or grub screw in the traditional way. The breakaway torque of LOCTITE 620 is 200.45 Nm, the one of LOCTITE 243 is 140.34 Nm (acc. to DIN 54 454). Blowing hot air on the screw connection reduces the breakaway torque.

Is the screw/grub screw removed, the residuals of the adhesive must be removed from the threaded hole (e.g. re-cutting the thread).

NOTE: The German version of the chapter was checked by LOCTITE Germany for correctness and was approved for publication.

14 Commissioning, Operation and Maintenance

14.1 General Information for Startup of IndraDyn L Motors

The startup of linear motors is different to the rotative servo motors. The differences are described in this chapter.

Use the functional description of the drive controller for more additional information

The following points have to be especially noticed when startup synchronouslinear motors.

- **Parameter** Synchronous-linear motors are kit motors whose single components are completed by an encoder system directly installed into the machine by the manufacturer. As a result of this, kit motors have no data memory to supply motor parameters or standard controller adjustment. At startup, all parameters have to be manually entered or loaded into the drive. The startup-program DriveTop makes all motor parameters of Bosch Rexroth available.
- **Controller Optimization** The procedure used for optimizing the control loops (current, velocity and position controllers) of linear direct drives corresponds to the one used for rotary servo drives. At linear drives are only the adjustment limits higher. At linear direct drives compared with rotative servo drives can be, for example, a 10-fold higher kv-factor adjusted. Precondition therefore is an appropriate machine construction (see chapter 9.3 "Requirements on the Machine Design" on page 102).
 - Moving Masses At controlled rotative servo drives are automatic-control engineering modifications at the rate of motor-moment of inertia to demand-moment of inertia. Such a modification is not available for direct drives with linear motors. The moved foreign mass is independent from the motor self-mass.
- **Encoder Polarity** The polarity of the actual-speed (length measuring system) must agree with the force polarity of the motor. This connection has to be established before commutation-adjustment.
- **Commutation Adjustment** It is necessary at synchronous linear motors to receive the position of the primary part relating on the secondary part by return after start or after a malfunction. This is called identification of pole position or commutation adjustment. The commutation adjustment-process is the establishment of a position reference to the electrical or magnetic model of the motor. The commutation adjustment can be done after installation of the motor components and length measuring system. The way of doing the commutation adjustment complies with the measuring principle of the length measuring system.

14.2 General Precondition

14.2.1 General Information

The following preconditions have to be created for a successful start-up.

- Adherence of the safety regulations and notes.
- Check of electrical and mechanical components on a safe function.
- Availability and supply of required implements.
- Adherence of the following described start-up

WA

Start-up

14.2.3

14.2.2 Adherence of all Electrically and Mechanically Components

Do a check of all electrically and mechanically components before start-up. Heed the following points in particular:

	 Safety warranty of personnel and machine Proper installation of the motor 	
	 Correct power connection of the motor 	
	 Correct connection of the length measuring system 	
	• Function of available limit switch, door switch, a.s.o.	
	 Proper function of the emergency stop circuit and emergency stop. 	
	 Machine construction (mechanical installation) in proper and complete condition. 	
	 Availability and function of suitable end-of-stroke damper. 	
	 Correct connection and function of the motor cooling. 	
	• Proper connection and function of the drive control unit.	
	Danger to life, heavy injury or damage by failure or malfunction on me- chanical or electrical components!	
/ARNING	\Rightarrow Troubleshooting at mechanical or electrical components before continue with the start-up.	
Implements		
ip software DriveTop	The start-up can be made directly via a NC-terminal or via a special software. The start-up software DriveTop makes a menu-driven, custom-designed and motor specific parameterizing and optimization possible.	
PC	For start-up with DriveTop is a usual Windows-PC needed.	
Start-up via NC	For start-up via NC-control unit, access to all drive parameters and functional- ities must be guaranteed.	
Oscilloscope	An oscilloscope is needed for drive optimization. It serves to display the signals, which can be shown via the adjustable analog output of the drive controller. Viewable signals are, e.g. nominal and actual values of the speed, position or voltage, position lag, intermediate circuit a.s.o.	
Multimeter	At troubleshooting and check of the components can be a multimeter with the possibility to voltage metering and resistor measuring helpful.	

14.3 General Start-Up Procedure

In the following flow-chart is the general start-up procedure at synchronous linear motors MLF shown. In the following chapters are these points explained in detail.

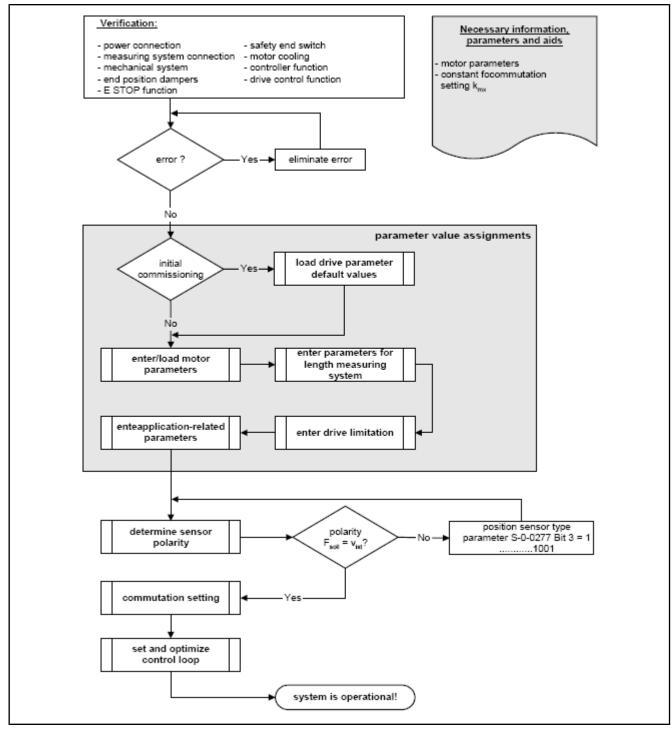


Fig. 14-1: General start-up procedure at synchronous linear motors

14.4 Parameterization

14.4.1 General Information

With DriveTop, entering or editing certain parameters and executing commands during the commissioning process is done inside menu-driven dialogs or in list representations. Optionally, it can also be performed via the control terminal.

14.4.2 Entering Motor Parameters

	chan	notor parameters are specified by Rexr ged by the user. Commissioning is not p ters are not available. In this case, pleas Rexroth Sales and Service Facility.	possible, if these pa-	
	Injuries and mechanical damage, if the motor is switched on immediately after the motor parameters have been entered! Entering the motor parameters does not make the motor operational!			
WARNING	\Rightarrow Do not switch on the motor immediately after the motor parameters have been entered.			
	\Rightarrow Enter the par	ameters for the linear scale.		
	\Rightarrow Check and adjust the measuring system polarity.			
	⇒ Perform commutation setting			
The motor parameters can be entered in the following way:				
	Use DriveTop to load all the motor parameters.			
	• Enter the individual parameters manually via the controller.			
	 With series machines, load a complete parameter record via the controlle or DriveTop. 			
14.4.3 Motor Parameter at Parallel Arrangement				
	Are two linear motors operated in a control device, the following parameters have to be adjusted when commisioning:			
	Parameter Designation Matching coefficient			
	P-0-4016	Direct-axis inductance of motor	x 0.5	

Parameter	Designation	Matching coefficient
P-0-4016	Direct-axis inductance of motor	x 0.5
P-0-4017	Quadrature-axis inductance of motor	x 0.5
P-0-4048	Stator resistance	x 0.5
S-0-0116	Current loop proportional gain 1	x 0.5
S-0-0109	Motor peak current	x 2
S-0-0111	Motor current at standstill	x 2

Fig. 14-2: Parameter adjustment at parallel arranagement

If not the maximum possible continuous nominal force or the maximum possible peak load of the motor is necessary, a smaller drive device can be used. In this case, the setting of the mentioned currents must be adjusted to the selected drive device.

14.4.4 Operation of IndraDyn L Synchronous Linear Motors without Liquid Cooling

Motor damage! Overheated winding!

 \Rightarrow If the current on a water-cooled motor is not accordingly reduced, then the motor heats-up so fast at 2.2x rated current that not in any case the thermal contacts cannot switch-off the motor on time. An overheated winding is the consequence. Due to the overheated winding, the winding insulation is weak or in an extreme case destroyed.

Without liquid coolant only reduced power data are available. These are listed in this documentation.

The stated values in the data sheets regarding rated force and rated current of the motors must be lowered depending on the coupling of the motors to ~40% of the stated value.

If this current reduction is not recorded in the parameter S-0-0111 (standstill motor), the 2.2-times of the water-cooled rated current can be applied to the motor, if necessary (for a stipulated period of time in the parameter P-0-4035). This current is by the factor 2.5 too high for the non-water cooled IndraDyn L motor.

Example:

Rated current for the water cooled motor = 10A

S-0-0111 = 10 A

Possible current = 2.2 x 10 A = 22 A

Rated current for the same motor design, but not water-cooled:

S-0-0111 = 10 A x 0.4 = 4 A

Possible current = 2.2 x 4 A = 8.8 A

R Notice the details in chapter 9.6.4 "Operation of IndraDyn L Synchronous Linear Motors without Liquid Cooling" on page 123 about operation of an IndraDyn L motor without liquid cooling.

14.4.5 Input of Linear Scale Parameters

Encoder type

The type of the linear scale must be defined. Therefore serves the parameter P-0-0074, Encoder type 1.

Encoder type	P-0-0074
Incremental measuring system , e.g. LS486 in conjunction with high-resolution DLF position interface	2
Absolute encoder with ENDAT interface, e.g. LC181 in conjunction with high-resolution DAG position interface	×

Fig. 14-3: Encoder type definition

Signal period Linear scale for linear motors generate and interpret sinusoid signals. The sine signal period must be entered in the parameter S-0-0116, sensor 1 resolution.

> R The details about the values for the parameter S-0-0116, Encoder 1 resolution is done in fig. 9-81 "Recommended linear scales for linear motors" on page 143. The values for the linear scale that are not shown in this figure must be obtained directly from the manufacturer.

14.4.6 Input of Drive Limitations and Application-Related Parameters

Drive Limitations

The possible selectable drive limitations include:

- . Current limitation
- Force limitation
- Velocity limitations
- Travel range limits

Application-Related Parameters

The application-related drive parameters include, for example, the parameters of the drive fault reaction.

Detailed information can be found in the description of function of the employed drive controller and/or Firmware.

14.5 Determining the Polarity of the Linear Scale

R

In order to avoid direct feedback in the velocity control loop, the effective direction of the motor force and the count direction of the linear scales must be the same.

$\mathbf{\Lambda}$	Different effective directions of motor force and count direction of linear scale cause uncontrolled movements of the motor upon power-up!		
	⇒ Safety against uncontrolled movement		
WARNING	\Rightarrow Adjust effective direction of motor force equal to linear scale count direction.		
	· · · ·		

Effective Direction of Motor Force To set the correct sensor polarity:

The effective direction of the motor force is always positive in the direction of the cable connection of the primary part.

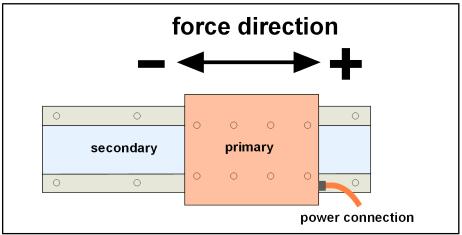
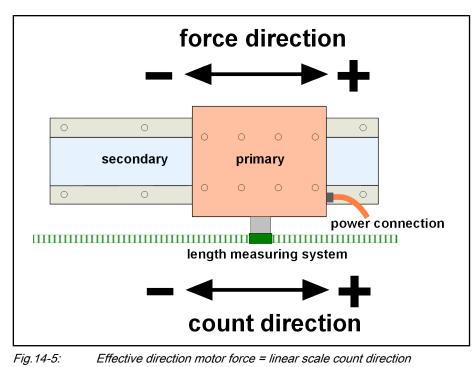
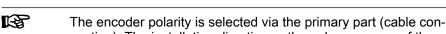




Fig. 14-4: Effective direction of motor force

Effective Direction Motor Force = Linear Scale Count Direction When the primary part is moved in the direction of the cable connection, the count direction of the linear scale must consequently be positive:

The encoder polarity is selected via the parameter

S-0-0277, position encoder type 1 (Bit 3)

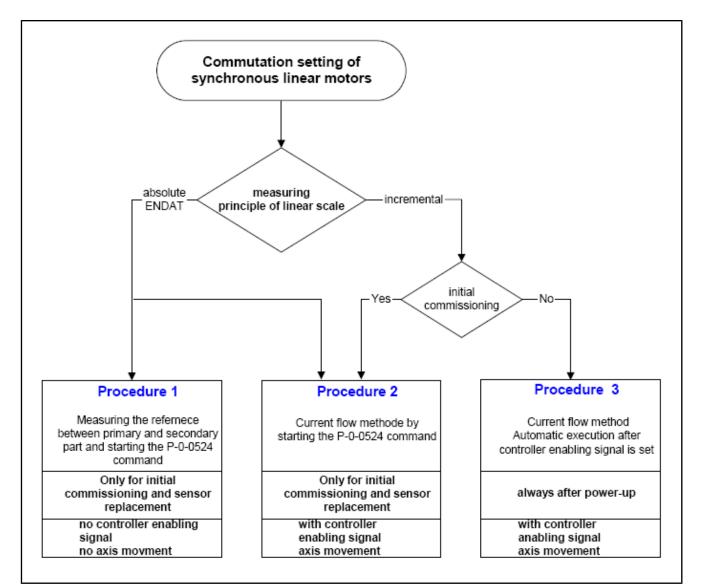
Position, velocity and force data must not be inverted when the linear scale count direction is set:

S-0-0085, Force polarity parameter 0000000000000000

S-0-0085, Velocity polarity parameter 0000000000000000

S-0-0085, Position polarities 000000000000000

The process-related axis count direction is set as required **after** sensor polarity and commutation have been set.


14.6 Commutation Adjustment

14.6.1 General Information

Setting the correct commutation angle is a prerequisite for maximum and constant force development of the synchronous linear motor.

This procedure ensures that the angle between the current vector of the primary part and the flux vector of the secondary part is always 90°. The motor supplies the maximum force in this state.

Adjustment Procedure Three different commutation adjustment procedures have been implemented in the firmware. The figure below shows the correlation between the employed linear scale and the method that is to be use.

Fig.14-6: Commutation adjustment method for synchronous linear motors

R ³	The three methods are described subsequently.
R	The methods 2 and 3 cannot be used for: - vertical axes without weight compensation -clamped or blocking axes

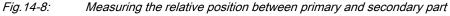
Malfunction due to errors in trigger motors and moving elements! Commutation adjustment must always be performed in the following cases:

- ⇒ Initial start-up
- \Rightarrow Modification of the mechanical attachment of the linear scale
- ⇒ Replacement of the linear scale
- \Rightarrow Modification of the mechanical attachment of the primary and/or secondary
- part

	Malfunction an mutation adjus	d/or uncontrolled motor move tment!	ment due to error in com-
	\Rightarrow Effective direction motor force = linear scale count direction		
WARNING	\Rightarrow Adhering to t	the described setting procedures	;
	⇒ Correct moto	or and encoder parameterization	
	⇒ Expedient parameter values must be assigned for current and velocity con trol loop.		
	⇒ Correct connection of motor power cable		
	\Rightarrow Protection against uncontrolled movements		
Motor Connection	The individual phases of the motor power connection must correctly be as signed. See also Chapter 8 "Electrical Connection".		
Parameter Verification	To ensure a correct commutation adjustment, the following parameters should be checked again and, if necessary, set to the values specified below:		
	Identity number	Description	Value
	S-0-0085	Torque/force polarity parameter	00000000000000000000
	S-0-0085 S-0-0043	Torque/force polarity parameter Velocity polarity parameter	000000000000000000000000000000000000000
	S-0-0043	Velocity polarity parameter	0000000000000000
	S-0-0043 S-0-0055	Velocity polarity parameter Position polarities	000000000000000000000000000000000000000

Fig.14-7:


Parameters that must be checked prior to commutation adjustment

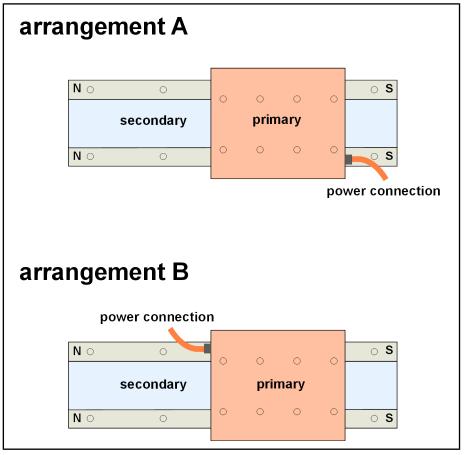

14.6.2 Method 1: Measuring the Reference between Primary and Secondary Part

If this procedure is used for commutation adjustment, the relative position of the primary part with respect to the secondary part must be determined. The benefit of this procedure is that the commutation adjustment requires neither the power to be switched on nor the axes to be moved. Commutation adjustment need only be performed during the first-time commissioning.

RF RF	This procedure requires an absolute linear scale with ENDAT in-
	terface.

Measuring the relative position between primary and secondary part Depending on the accessibility of primary and secondary part in the machine or system, the relative position between primary and secondary part can be measured in different ways.

R^a


From now on, the position of the primary part must not be changed until the commutation adjustment procedure is terminated!

Calculation of P-0-0523, commutation adjustment measured value

The input value for P-0-0523 that is required for calculating the commutation offset, is determined from the measured relativce position of the primary part with respect to the secondary part (fig. 14-8 "Measuring the relative position between primary and secondary part" on page 236, distance d, e, f or g, depending on accessibility), and a motor-related constant k_{mx} (see fig. 14-9 "Calculation of P-0-0523, commutation adjustment measured value" on page 236 and fig. 14-11 "Motor constants for commutation adjustment kmx " on page 237).

Referer	nce point 1:	$P - 0 - 0523 = d - k_{mx}$
Referer	nce point 2:	$P - 0 - 0523 = e - k_{mx} - 37.5 \text{ mm}$
Referer	nce point 3:	$P - 0 - 0523 = -f - I_p - k_{mc}$
Referer	nce point 4:	$P - 0 - 0523 = 37.5 \text{ mm} - g - I_p - k_{mk}$
P-0-0523	Commutation adju	ustment measured value in mm
d		1 in mm (Fig. 14-8)
е	•	5.08 cm mm (Fig. 14-8)
f	Relative position 7.62 cm mm (Fig. 14-8)	
g	Relative position 10.16 cm mm (Fig. 14-8)	
k _{mx}		
l _P	Length of primary	part in mm
Fig.14-9:	Calculation of P-0	0-0523, commutation adjustment measured value
R	mutation adjustme	n is correct when you determine P-0-0523, com- nt measured value. If P-0-0523 is determined n, this must be entered when the setup procedure

Motor Constant for Commutation Adjustment kmx The motor constants for adjusting the commutation offset k_{mx} depend on the orientation of primary and secondary part:

Fig.14-10: Possible arrangements between primary and secondary part

	Arrangement A k _{mx} in mm	Arrangement B k _{mx} in mm
Standard encapsulation frame sizes 040 300	68	105,5
Thermal encapsulation Size 040 300	65	102,5

Fig.14-11: Motor constants for commutation adjustment kmx

Example 1, reference ① (see fig. 14-8 "Measuring the relative position between primary and secondary part" on page 236):

d = 100 mm , k_{mx} = 68.0 mm

P-0-0523 = d - k_{mx} = 100 mm - 68.0 mm = 32 mm

Example 2, reference ① (see fig. 14-8 "Measuring the relative position between primary and secondary part" on page 236):

d = 0 mm , k_{mx} = 68.0 mm

P-0-0523 = d - k_{mx} = 0 mm - 68.0 mm = 68.0 mm

Example 3, reference ④ (see fig. 14-8 "Measuring the relative position between primary and secondary part" on page 236):

g = 180 mm , k_{mx} = 68.0 mm , I_p = 540 mm

P-0-0523 = 37.5 mm - g - l_p - k_{mx} = 37.5 mm - 180 mm - 540 mm - 68 mm

0 0500 - 750 5

	P-0-0523	P-0-0523 = 750.5 mm				
Activation of Commutation Adjust- ment Command	Prerequisites:					
		drive must be in the A0-13 state during the subsequent adjustment edure (ready for power connection).				
	sinc	2. The position of the primary part and/or the slide must not habe change since the relative position of the primary part with respect to the second part has been measured.				
	Once the determined value P-0-0523, commutation setting measured value, has been entered, the command P-0-0524, D300 commutation setting command must be started. The commutation offset is calculated in this step. The commutation offset is calculated in this step.					
	R	If the drive is in control mode when the command is started, the commutation offset is determined using the current flow method (see method 2).				
	The command must subsequently be cleared.					
14.6.3 Method 2: Cu	rrent Flo	ow Method Manually Activated				
	This method is used for the following configurations:					
	ß	• Synchronous linear motors with absolute linear scale. In first- time commissioning, as an alternative of method 1.				
	1. Adjust the operation mode "Torque-force control"					
	2. Bring the drive into control (AF).					
	3. Start the commando via P-0-0524					
WARNING	Injuries due to errors in trigger motors and moving elements!					
	\Rightarrow Is the drive not accordingly commutated, then the drive must only be switched in operation mode "Torque-force control" in AF.					
	\Rightarrow Is the drive switched in velocity control or in position control in AF, an uncontrolled axis movement cannot be excepted.					
	RF RF	The parameter P-0-0560, commutation adjustment voltage, P-0-0562 and cycle duration can individually be adjusted at initial start-up by the user.				
14.6.4 Method 3: Cu	rrent Flo	ow Method Automatically Activated				
Controllers ECODRIVE and DIAX04	This method is used for the following configurations:					
	R ²	• Synchronous linear motor with incremental length scale in connection with controllers Ecodrive and Diax04				
		At initial start-up of the axis, the parameter P-0-0560, com- mutation adjustment voltage, P-0-0562 and commutation ad-				

mutation adjustment voltage, P-0-0562 and commutation adjustment are automatically determinated and recorded in the drive. At every re-start of the axis, the commutation adjustment is made new to method 3. The parameter values for P-0-0560 and P-0-0562 of the initial start-up serve as initial value for the procedure.

The parameter P-0-0560, commutation adjustment voltage, P-0-0562 and cycle duration can individually be adjusted at initial start-up by the user.

Controller IndraDrive This method is used for the following configurations:

Synchronous linear motors with incremental length measuring system in connection with INDRADRIVE controllers. At initial start-up of the axis, the parameters P-0-0506, peak value for angle-survey and P-0-0507, test frequency for angle-survey are automatically determinated, if in P-0-506 "0" is entered. Subsequently, the determined parameters are recorded in the drive-device. At every re-start of the axis, the commutation adjustment is made new to method 3. The parameter values for P-0-0506 and P-0-0507 of the initial start-up serve as initial value for the procedure.

P-0-507, test frequency for angle-survey can individually be adjusted at initial start-up by the user.

14.7 Setting and Optimizing the Control Loop

14.7.1 General Sequence

The control loop settings in a digital drive controller are significant to the characteristics of the servo axis. The control loop structure consists of a cascaded position, velocity and current controller. The corresponding mode defines the active controllers.

Defining the control loop settings requires the corresponding expertise.

The procedure used for optimizing the control loops (current, velocity and position controllers) of linear direct drives corresponds to the one used for rotary servo drives. At linear drives are only the adjustment limits higher.

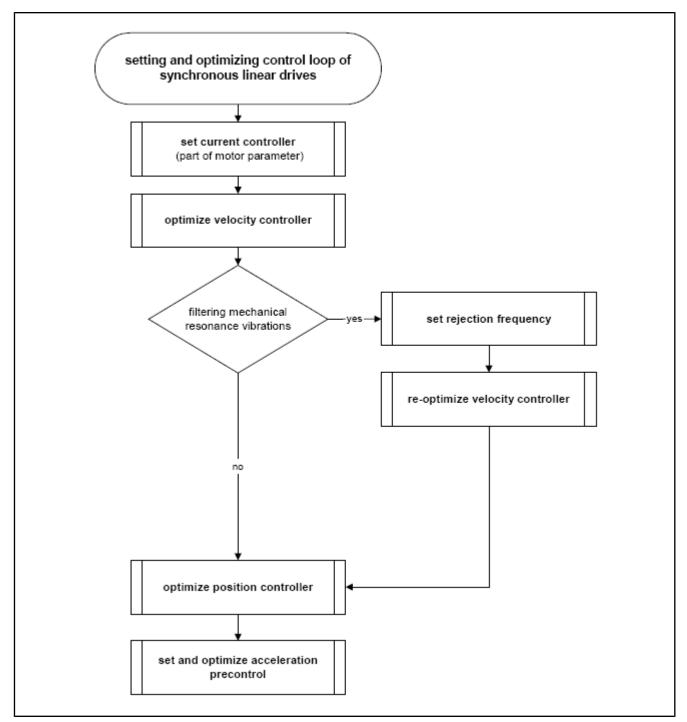


Fig.14-12: Setting and optimizing the control loop of synchronous linear drives.

	RF I	Use the functional description of the drive controller for more addi- tional information	
Automatic Control Loop Setting	Drive controllers of the EcoDrive03 series are able to perform automatic control loop adjustment.		
Filtering Mechanical Resonance Vi- brations	Digital drives from Rexroth are able to provide a narrow-band suppression of vibrations that are produced due to the power train between motor and me- chanical axis system. This results in increased drive dynamic at a good stability.		

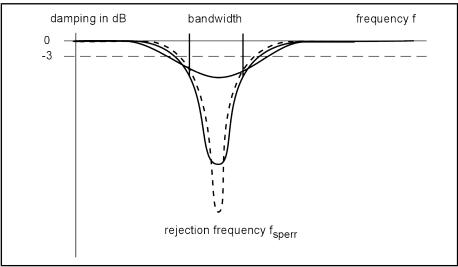
The position or velocity feedback in the closed control loop excites the mechanical system of the slide that is moved by the linear drive to perform mechanical vibrations. This behavior, known as "Two-masses vibration", is mainly in the frequency range between 400 and 800 Hz. It depends on the rigidity of the mechanical system and the spatial expansion of the system.

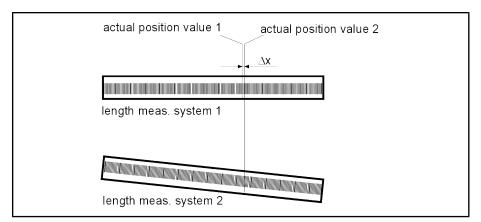
In most cases, this "Two-masses vibration" has a clear resonant frequency that can selectively be suppressed by a rejection filter in the drive.

When the mechanical resonant frequency is suppressed, improving the dynamic properties of the velocity control loop and of the position control loop with may be possible, compared with close-loop operation without the rejection filter.

This leads to an increased profile accuracy and to smaller cycle times for positioning processes at a sufficient distance to the stability limit.

Rejection frequency and bandwidth of the filter can be selected. The highest attenuation takes effect on the rejection frequency. The bandwith defines the frequency range at which the attenuation is less than –3 dB. A higher bandwidth leads to less attenuation of the rejection frequency!




Fig.14-13: Amplitude frequency curve rejection filter vs. bandwidth, qualitative

14.7.2 Parameter Value Assignments and Optimization of Gantry Axes General Information

Prerequisites:

- The parameter settings of the axes are identical
- Parallelism of the guides of the Gantry axes
- Parallelism of the linear scale
- In the controller, the axes are registered as individual axes

```
Drive-internal axis error compensation procedures can be used for
compensating the misalignments between two linear scales as or
the mechanical system. Please refer to the corresponding descrip-
tion of functions of the drive controller for a description of the
operational principle and the parameter settings.
```


Fig.14-14: Possible misalignment with the linear scale of a Gantry axes

Parameter settings

When using Gantry axes, your must ensure that the parameter settings of the following parameters are identical:

- Motor parameters
- Polarity parameters for force, velocity and position
- Control loop parameters

We have:

k_p

$$\mathbf{k}_{v1} = \mathbf{k}_{v2}$$
$$\mathbf{k}_{p1} = \mathbf{k}_{p2}$$

k_v Position controller kv-factor S-0-0104

Velocity controller proportional gain S-0-0100

Velocity Controller Integral Time (Integral Part) *Fig. 14-15: Proportional gains in the position and velocity control loop of both axes.* The following possibilities must be taken into account for the velocity controller integral time (integral part):

	Possibility 1	Possibility 2	Possibility 3	Possibility 4
Alignment of length lin- ear scale and guides	ideal	not ideal	not ideal	not ideal
Integral Part	in both axes	in both axes	in one axis only	in no axis
Behaviour of the axes	Since both motors fol- low the position com- mand value ideally, there will not be a dis- tortion of the mechani- cal system	each other until there is an equalization via the mechanical coupling or until the maximum cur- rent of one or both drive controller(s) has been reached and a control	The axis without inte- gral-part permits a con- tinuous position offset. The size of the position offset depends on the rigidity of the mechani- cal coupling of both ax- es and of the propor- tional gains in the position and velocity control loop.	tinuous position offset. The size of the position offset depends on the proportional gains in the position and veloci-

Fig. 14-16:

6: Parameterization of the velocity controller integral time S-0-0101 for Gantry-axes.

Commissioning, Operation and Maintenance

Optimization The previously described procedure must be followed for optimizing the position and velocity loop.

Any parameter modifications that are made during the optimization of Gantry axes must always be made in both axes simultaneously. If this is not possible, the parameter changes should be made during optimization in smaller subsequent steps in both axes.

14.7.3 Estimating the Moved Mass Using a Velocity Ramp

Often, the exact moving mass of the machine slide is not known. Determining this mass can be made difficult by moving parts, additionally mounted parts, etc.

The procedure explained below permits the moving axes mass to be estimated on the basis of a recorded velocity ramp. This permits, for example, the acceleration capability of the axis to be estimated.

Preparation This procedure requires the oscillographic recording of the following parameters:

- S-0-0040, actual velocity value
- S-0-0080, torque/force command value

You can either use an oscilloscope or the oscilloscope function of the drive in conjunction with DriveTop or NC.

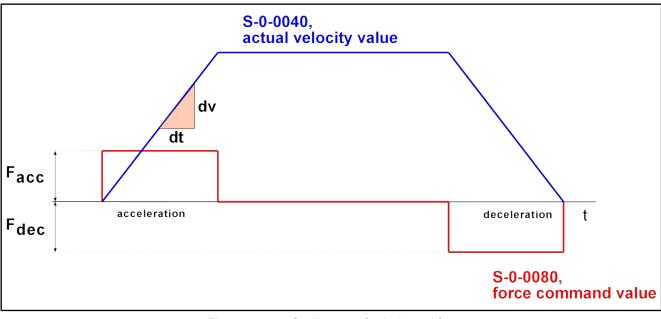


Fig. 14-17: Oscillogram of velocity and force

Commissioning, Operation and Maintenance

$$\mathbf{m} = \mathbf{30} \cdot \mathbf{F}_{dN} \cdot \left(\frac{\mathbf{F}_{ACC} + \mathbf{F}_{DEC}}{\mathbf{100\%}}\right) \cdot \frac{\Delta t}{\Delta \mathbf{v}}$$

Moved axis mass in kg

Continuous nominal force of the motor in N

F_{ACC} Force command value during acceleration in %

F_{DEC} Force command value during braking in %

Δv Velocity change during constant acceleration in m/min

- Time change during constant acceleration in s
- *Fig.14-18: Determining the moved axis mass on the basis of a recorded velocity ramp*

Prerequisites:

m

 F_{dN}

Δt

1. Correct parameter settings of the rated motor current (basis of representation S-0-0080)

2. Frictional force not directional

3. Recording of Δv and Δt at constant acceleration

4. Do not perform at maximum motor force to avoid non-linearities

Due to possible direction-related force variations, this procedure cannot or only conditionally be used for vertical axes.

14.8 Maintenance and Check of Motor Components

14.8.1 General Information

The motor components of IndraDyn L do not need any maintenance. Due to external influence, the motor components can be damaged during operation. There should be a preventive maintenance of the linear motor components within the service intervals of the machine or system.

14.8.2 Check of Motor and Auxiliary Components

The following points should be observed and if necessary restored during the preventive check of motor and auxiliary components:

- Noticeable sound during operation
- Scratches on primary and secondary part
- Dirt (e.g. shavings, swarfs, grease by guides etc.) within the air gap between primary and secondary part

Check the functionality of the protection measures and change them if necessary! See also chapter 9.3.4 "Protection of the Motor Installation Space" on page 103.

- Tightness of liquid cooling, hoses and connections
- State of power and encoder cables in a drag chain.
- State of linear scale (e.g. soiled)
- State of guides (e.g. deterioration of linear guides)

14.8.3 Electrical Check of Motor Components

The electrical defect of a primary part can be checked by measuring electrical characteristics. The following variables are relevant:

- Resistance between motor connecting wires 1-2, 2-3 and 1-3
- Inductance between motor connecting wires 1-2, 2-3 and 1-3

Commissioning, Operation and Maintenance

• Insulation resistance between motor connecting wired and guides

Resistance and Inductance	The measured values of resistance and inductance can be compared with values specified in Chapter 4 "Technical Data". The individual values of the and inductance measured between the connections 1-2, 2-3 and should be identical – within a tolerance of \pm 5 %. There can be a phase sincuit, a fault between windings, or a short circuit to ground if one or values differ significantly. If so, the primary part must be exchanged.	resist- id 1-3 short
Isolation Resistance	 The insulation resistance – measured between the motor connecting lead pround – should be at least 1 MΩ (MegaOhm) The primary part must blaced in this case. If there are and doubts during the electrical verification, please sult Rexroth Service. 	be re-

15 Appendix

15.1 Recommended Suppliers of Additional Components

15.1.1 Length Measuring System

Bosch Rexroth AG Maria-Theresien-Str. 23 97816 Lohr am Main, Germany Internet: http://www.boschrexroth.com

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany Internet: http://www.heidenhain.de

Renishaw GmbH

Karl-Benz Strasse 12 72124 Pliezhausen, Germany Internet: http://www.renishaw.com

15.1.2 Linear Scales

Bosch Rexroth AG Maria-Theresien-Str. 23 97816 Lohr am Main, Germany Internet: http://www.boschrexroth.com

15.1.3 Energy Chains

igus GmbH

Spicher Straße 1a 51147 Cologne, Germany Internet: http://www.igus.de

KABELSCHLEPP GMBH

Marienborner Straße 75 57074 Siegen, Germany Internet: http://www.kabelschlepp.de

15.1.4 Cooling Aggregate

SCHWÄMMLE GmbH & Co KG Dieselstraße 12-14 71546 Aspach, Germany Internet: http://www.schwaemmle-gmbh.de

Universal Hydraulik GmbH

Siemensstraße 33 61267 Neu-Anspach, Germany Internet: http://www.universalhydraulik.com

15.1.5 Coolant Additives

NALCO Deutschland GmbH

Plankstr. 26 71691 Freiberg/Neckar, Germany Fax +49(0)7141-703-239 e-mail: slund@nalco.com

15.1.6 Coolant Hose

Polyflex AG

Dorfstaße 49 5430 Wettingen, Switzerland Internet: http://www.polyflex.ch

igus GmbH

Spicher Straße 1a 51147 Cologne, Germany Internet: http://www.igus.de

Bosch Rexroth AG Maria-Theresien-Str. 23 97816 Lohr am Main, Germany Internet: http://www.boschrexroth.com

15.1.7 Axis Cover Systems

Möller Werke GmbH Kupferhammer 33649 Bielefeld, Germany Internet: http://www.moellerflex.de

HCR-Heinrich Cremer GmbH

Oppelner Str. 37 41169 Moenchengladbach, Germany Internet: http://hcr.connection-net.de/deutsch/index.html

Gebr. HENNIG GmbH P. O. Box 1137 85729 Ismaning, Germany Internet: http://www.hennig-gmbh.de

15.1.8 End Position Cushioning

ACE Stoßdämpfer GmbH P. O. Box 1510 40740 Langenfeld, Germany Internet: http://www.ace-ace.de

Bosch Rexroth AG Maria-Theresien-Str. 23 97816 Lohr am Main, Germany Internet: http://www.boschrexroth.com

Metal Braid Shock Absorbers Rhodius GmbH

Treuchlinger Str. 23 91781 Weißenburg, Germany Internet: http://www.rhodius.com

15.1.9 Clamping Elemens for Linear Scales

Bosch Rexroth AG Maria-Theresien-Str. 23 97816 Lohr am Main, Germany Internet: http://www.boschrexroth.com

15.1.10 External Mechanical Brakes

Kendrion Binder Magnete GmbH Mönchweilerstr. 1 78048 Villingen-Schwenningen, Germany Internet: http://www.kendrion-electromagnetic.com

Ortlinghaus-Werke GmbH

Kenkhauser Str. 125 42929 Wermelskirchen, Germany Internet: http://www.ortlinghaus.com

15.1.11 Weight Compensation Systems

Pneumatic Ross Europa GmbH Robert-Bosch-Str. 2 63225 Langen, Germany Internet: http://www.rosseuropa.com

Hydraulic Bosch Rexroth AG Maria-Theresien-Str. 23 97816 Lohr am Main, Germany Internet: http://www.boschrexroth.com

15.1.12 Wiper

Hunger DFE GmbH Dichtungs- und Führungselemente

Alfred-Nobel Str. 26 97080 Würzburg. Germany Internet: http://www.hunger-dichtungen.de

HME Dichtungssysteme Richthofenstr. 31 86343 Königsbrunn, Germany Internet: http://www.hme-seals.de

15.2 Enquiry Form for Linear Drives

Bosch Rex	roth											
Fax:									Date	:		
Contact per	son:											
1. Informat	ion f	or the us	er									
Company						Name	e					
Street						Depa	rtment					
Zip Code						Phon	e					
Place						Fax						
						Emai	I					
Requesting	to:	O Recal	ı o	Drive dime	ensioni	ng O) Offer	o				
2. General	infor	mation o	n use	e								
Sector			0 М	achine Too	ols		O Auto	mation	0) Packaging	O Printi	ng
			ο									
Type of us	e											
Designatio Axis	n of t	the										
Axis Group	oing		O Si	ngle axis		ΟG	rouping	of		axis within th	ne machine	
			O only linear drives O rotative and linear drives									
Quantity					per	year						
3. Mechani	cal a	nd diner	natio	requireme	ents							
Installation) pos	ition	о н	orizontal	O Ve	rtical	os	lant, a:	xis an	gle:	.degrees	
Moved mo component			O Pr	rimary part	moves	5	O S	e∞nd	ary pa	art moves		
Moved ma:	55				kg (ind.g	uides, po	wer fe	eders	, etc.)		
Maximum	veloc	ity			m/min		Maxim acceler				m/s²	
Base force	!				N (friction	, en ergy	supply	y, etc.)		
Machining	force	2			N (detaile	d specif	cation	s see	point5)		

Fig. 15-1: Enquiry form (Sheet 1/4)

4. Ambient conditions											
Ambient tem	Ambient temperature°C										
	Machined material O Steel / cast iron O Light metal O Plastic O Wood O Other: O None(only handling) Dirt and aggressive media U Chips U Dust O Oil or lubricants:										
Protection of motor compo	onents		O Bellows O Telescopic cover O Wiper on secondary O Other:								
5. Thermal co	onditions ar	nd coo	ling								
🛛 Liquid cooli	Liquid cooling Coolant and additives:										
Inlet temperature, minimum:ºC maximum:ºC											
Max. flow quantity:											
Maximum heating of the machine structure:											
		Maxim	um coolant temperature rise: K 0 Not relevant								
		Additio	nal cooling at machine O Yes O No								
0 Air cooling,	natural com	rection	(Reducing the continuous forces to approximately 25 %)								
6. Drive and	Control										
Drive series	0 ECODR	IVE03	0 DIAX04 0 IndraDrive								
Main voltage	O 1 x 230	V	0 3 × 400 ∨ 0 3 × 480 ∨ 0								
Drive interface / bus system	O Profibus	SERCOS interface O ANALOG ±10∨ O Parallel interface Profibus O Interbus O CANopen O DeviceNet O PWM									
Control	0										
7. Linear sca	le										
Measuring pr and interface	indple	0 incn	olut - ENDAI emental, sine signals 1 V ₅₅ emental, sine signals 1 V ₅₅ , distance-encoded reference marks								
Model		0 opei buides									
Positioninga	ссигагу		µm								

Fig. 15-2: Enquiry form (Sheet 2/4)

Specification of motion profile Specification of motion profile O Not required, drive selection data exist (see 8.1) O Strokes, postioning and idle times, maximum velooity and acceleration as specified under item 3 (see 8.2) O Sketch of velooity profile v(t) and process forces Fir(t) (see 8.2 and 8.3) O Operating phases and duty cycles (see 8.4) O Equation of motion for s(t) and / or v(t) (see 8.5) O S(t) and / or v(t) can ve specified in digital form: O MathCad O Excel O ASCII O																									_
motion profile 0 Strokes, positioning and idle times, maximum velocity and acceleration as specified under items (see 8.2) 0 Strokes, positioning and idle times, maximum velocity and acceleration as specified under items (see 8.2) 0 Operating phases and duty cycles (see 8.4) 0 Equation of motion for s(1) and /or v(1) (see 8.5) 0 s(t) and /or v(t) can ve specified in digital form: 0 MathCad 0 Excel 0 MathCad 0 Excel 1 maximum velocities Fmail: Maximum Velocities 2 Specification of strokes, position and idle times Stoke Travel Positioning time Kile time 1 N 2 Stoke 1 N 2 Stoke 1 N 2 N 3 N 3 N 3 N 4 N 1 N 2 N 3 N 3 N 4 N 5 N 3 N 3 N <			-																						
specified under fitem 3 (see 8.2) 0 Sketch of velocity profile w(t) and process forces Fi(t) (see 8.2 and 8.3) 0 Operating phases and duty cycles (see 8.4) 0 Equation of motion for s(t) and / or w(t) (see 8.5) 0 s(t) and / or w(t) can ve specified in digital form: 0 MathCad 0 Excel 0 ASCII 0	Speci motic	ifica on p	tion rofile	of e																					
O Operating phases and duty cycles (see 8.4) O Equation of motion for s(t) and / or v(t) (see 8.5) O s(t) and / or v(t) can ve specified in digital form: O Math Cad O Excel O ASCII O					spe	ecifie	d un	ideri	item	3 (s	see i	8.2)												5	
O Equation of motion for s(t) and / or v(t) (see 8.5) O s(t) and / or v(t) can ve specified in digital form: O MathCad 0 Excel 0 ASCII 0 8.1 Data for motion selection exists: Fmax: Fmax: Tracel PostBoolug time kile time Stocke Trazel PostBoolug time kile time Stocke Trazel PostBoolug time kile time Stocke Trazel PostBoolug time kile time 1					0 :	Sketo	h of	velo	ocity	prof	filev	(t)a	ind j	ргос	ess	forc	es l	F∎¢)	(se	e 8.2	and?	18.3	3)		
O s(t) and /or v(t) can ve specified in digital form: O MethCad O Excel O ASCII O						•	-	-				• •		•		•									
O MathCad O Excel O ASCII O 8.1 Data for motion selection exists:						•									• •										
Fmax: Imax: Fmax: Imax: Imax: <th< td=""><td></td><td></td><td></td><td></td><td>0 :</td><td>s(t) a</td><td>nd / O M</td><td>or vi lath (</td><td>t)cz Cad</td><td>IN VI</td><td>esp 0 E</td><td>ecifi xcel</td><td>ied i</td><td>n dig O A</td><td>gital ISCI</td><td>fom I</td><td></td><td>o</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					0 :	s(t) a	nd / O M	or vi lath (t)cz Cad	IN VI	esp 0 E	ecifi xcel	ied i	n dig O A	gital ISCI	fom I		o							
8.2 Specification of strokes, position and idle times Stroke Travel Positioning time kile time 2 - - 8 - 3 - - 8 - - 3 - - 0 - - - 3 - - 0 - - - - 3 - - 0 - <	8.1 D	ata i	for m	notic	on se	ectio	on e	xiste	s:																
Stocke Travel Positioning time kile time Stocke Travel Positioning time kile time 1 -		Fmas: N Fmas:																							
1 3	8.2 S	ped	ficat	ion	of str	okes	s, po	ositio	on a	ndi	dle	time	es -												
2 3 -		•	Trave	el	Post	torin	gtim	e	kile	time	e				Trave	el		Pos	tioni	ng tir	ne	k	die t	Ime	
3 10 3 11 3 12 8 3 ketch of velocity profile and process forces								-+			- +	-													-
8.3 Sketch of velocity profile and process forces								-+			-	-													-
8.3 Sketch of velocity profile and process forces		1-						- †			- †						- -								-
7 14 8.3 Sketch of velocity profile and process forces	· ·]]						ΞĮ			1														_
8.3 Sketch of velocity profile and process forces								-+			-														-
	8.3 SI	 keto	h of	velo	ocity	profi	le ar	nd p	noce	essi	 fore		- +				-¦-								-
	т		_	-	_	-			_	_	_	_		_	_	_					_	_	_		
				+																	+		_	\square	
			_	-		-			_	_	_				_						\neg	\neg	_	\square	
	1																								
				+		+			_	_	_	_		_	_	-				-	+	+	_	\square	
	1																								
				+												_					-	-		\square	
	1			+	\pm	\perp															\dashv	\dashv		曰	
	1											Zeiti	In												
Zit in																									
Image: Constraint of the second se]																								
Image: Constraint of the second se			-+	+	+	+	$\left \right $		-							-					+	+	_	\vdash	
Image: Constraint of the second se	1			\pm																	\square				
2it In		\vdash	-	+		-			-	_	-		\square			-					+	-		\square	
Zait In																						\pm		\square	
Zait In]				\top																				
Zit In					+	+																		\square	
28it In	1			\downarrow																				\square	
	1					_						zət	In												

Fig. 15-3: Enquiry form (Sheet 3/4)

		ED	Force F ₁
Acceleration, deceleration atm/s*		X	N
Acceleration, deceleration atm/s* a	nd machining	X	N
Rapid traverse at v = constant =m/	min	X	N
Machining at v =m/min		%	N
Standstill with machining		%	N
Standstill without machining		X	N
		X	N
	Total:	100 %	
8.5 Equation of motion for s(t) or v(t)			
Equation of motion,			
e.g.:s(t)=r⋅sin(ω⋅t)			
=-gs(t)=tstri(w-t)			
Explanation:			
9. Miscellaneous/comments/sketches			

Fig. 15-4: Enquiry form (Sheet 4/4)

Service and Support

16 Service and Support

16.1 Helpdesk

Our service helpdesk at our headquarters in Lohr, Germany, will assist you with all kinds of inquiries.

Contact us:

- By phone through the Service Call Entry Center
 Monday to Friday: 7:00 am 6:00 pm Central European Time
 +49 (0) 9352 40 50 60
- By fax
 - +49 (0) 9352 40 49 41
- By e-mail: service.svc@boschrexroth.de

16.2 Service Hotline

Out of helpdesk hours please contact our German service department directly: +49 (0) 171 333 88 26

or

+49 (0) 172 660 04 06

Hotline numbers for other countries can be found in the addresses of each region on the Internet (see below).

16.3 Addresses

For the current addresses of our sales and service offices, see

http://www.boschrexroth.com

On this website you will find additional notes regarding service, maintenance (e.g. delivery addresses) and training.

Outside Germany please contact our sales/service office in your area first.

16.4 Helpful Information

For quick and efficient help please have the following information ready:

- Detailed description of the fault and the circumstances
- Information on the type plate of the affected products, especially type codes and serial numbers
- Your phone and fax numbers and e-mail address, so we can contact you in case of questions

Index

Α

Accessories Hall sensor box 85 Additional Components Suppliers 247 Additional components 3 Addresses 255 Ambient temperature 135 **Application Range 1** Arrangement of Motor Components Double comb arrangement 106 Gantry arrangement 110 Parallel arrangement 105 Single arrangement 104 Assembly Motor Components Screw Locking 226 Attractive force 20 Attractive Force 111 Axis Cover Systems 146 Bellow covers 147 Roller covers 147 Suppliers 248 Telescopic covers 147

В

Brakes 145 Suppliers 249

С

Checking the Motor Components Factory-checked 215 Check of Motor Components On the customer side 244 Chip Attraction 137 Commutation Adjustment 227, 233 Connection drive control device 92 Continuous Feed Force 159 **Continuous Nominal Current 160** Continuous nominal force 20 **Continuous Nominal Voltage 20** Controller Optimization 227 Coolant Corrosion protection 121 Coolant additives 121 Ready-to-use cooling water 121 Water treatment kits 122 **Coolant Hose** Suppliers 248 Cooling Condensation 123 Coolant additives 121 Coolant duct 130 Coolant Medium 119 Coolant temperature 122 Flow quantity coolant 125

Heat exchanger unit 127 Maximum pressure coolant circuit 123 pH-value 120 Power loss 116 Pressure drop 126 Secondary parts 119 Standard encapsulation 118 Thermal encapsulation 118 Cooling Aggregate Suppliers 247 Cooling Concept LSF 118 Cooling Down 118 Cooling water treatment 122

D

Deactivation 149 Delivery Status 212 Drive Controllers Motor-Controller-Combinations 159 Drive Power 194 DriveTop 228 Duty Cycle and Feed Force 192 Duty Ratio 160

Ε

Efficiency 197 Electrical Connection Power connector 87 Emergency Stop 149 Encoder Polarity 227 End Position Cushioning Suppliers 249 End Position Shock Absorber 146 Energy Chains Suppliers 247 Enquiry Form for Linear Drives 251

F

Feed Force 111 Final Over Temperature 117 Flow Quantity Coolant 125 Force constant 20 Forces Reactive forces 103 Frame length 70, 72 Frame Size 70, 72 Frame Sizes 101

G

Gantry Axes 241

Н

Hall sensor box SHL 85 Handling 211 Heating Up 117 Index

Index

Helpdesk 255 Housing surface 138

l

Identification of the Motor Components 211 Installation dimension 49 Installation dimensions MLF040 51 MLF070 54 MLF100 57 MLF140 60 MLF200 63 MLF300 66 Installation height 49 Installation Motor Components Sekundary part segments 220 Installation tolerances 49 Instructions on use 5 Appropriate use 5 Inappropriate use 6 **Insulation Class 116** Isolation resistance 245

J

Jerk Limitation 151

L

Length Measuring System 139 Frame sizes 140 Measuring principle 140 Measuring System Cables 143 Permitted velocity and acceleration 142 Suppliers 247 Length Measuring Systems Mounting 144 Position accuracy 142 Selection criterias 139 Linear Drive Axis construction 97 Linear Guides 145 Linear Scales Suppliers 247 Load Rigidity Dynamic 156 Static 155

Μ

Magnetic Fields 137 Mains Failure 150 Malfunction 149 Maximum current 20 Maximum Feed Force 159 Maximum force 19 Maximum Power Loss 159 Maximum velocity 20 Maximum Velocity 159 Maximum voltage 160 Mechanical construction Mass reduction 102 Mechanically linked axes 103 Rigidity 102 Motor design Primary part standard encapsulation 99 Primary part thermo encapsulation 99 Secondary part 100 Motor Design Thermal encapsulation primary part 159 Motor Dimensioning 179 Average velocity 184 Feed Forces 182 Movement Equations 181 Sinusoidal velocity 190 Trapezoidal velocity 185 Triangular velocity 189 Motor Parameters 230 Mounting Motor Components **General Procedure 217** Moving Masses 227

Ν

Natural Frequency 102 Noise Emission 139 Nominal air gap 20 Nominal Velocity 20, 159

0

Ordering Designations 69 Output Cooling capacity 196 Energy Regeneration 196 Maximum Output 195 Rated Output 194

Ρ

Packaging 212 Parameter 227 Performance spectrum 2 Polarity of the Linear Scale 232 Pole width 20 Position Accuracy 153 Position Resolution 153 Power Loss 116 Pressure drop 125, 126 Protection Class 136 PWM-Frequency 159

R

Rated power loss 20 Resonant Frequency 241

S

Safety instructions for electric drives 7 Service hotline 255 Setting and Optimizing the Control Loop 239

Index

Setup elevation 135 Shock 138 Shock absorber 146 Short-Time Operation Force 160 Sizing Examples 198 Standards 4 Start-Up Implements 228 Mass definition 243 Parameterization 229 Precondition 227 Procedure 228 Start-Up of IndraDyn L – Motors without Liquid Cooling 230

Т

Technical data Frame size MLP040 21 Technical data - frame size MLP300 45 Temperatur Monitoring 132 Thermal time constant 21, 116 Type Codes 69 Type Plate 211

U

Utilization factor 135

V

Velocity Resolution 153 Vertical Axes 234 Vertical Axis 111 Vibration 138 Voltage constant 20

W

Warnings 212 Weight Compensation 111 Weight Compensation Systems Suppliers 250 Winding 70 Winding inductivity 20 Winding resistance 20 Winding Temperature 116 Wiper Suppliers 250 Wipers 147 Notes

Bosch Rexroth AG Electric Drives and Controls P.O. Box 13 57 97803 Lohr, Germany Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Germany Phone +49 (0)93 52-40-50 60 Fax +49 (0)93 52-40-49 41 service.svc@boschrexroth.de www.boschrexroth.com

Printed in Germany DOK-MOTOR*-MLF******-PR03-EN-P